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Abstract

Radiomics aims to quantify phenotypic characteristics on
medical imaging through the use of automated algorithms.
Radiomic artificial intelligence (AI) technology, either based
on engineered hard-coded algorithms or deep learning meth-
ods, can be used to develop noninvasive imaging-based bio-
markers. However, lack of standardized algorithm definitions
and image processing severely hampers reproducibility and
comparability of results. To address this issue, we developed
PyRadiomics, a flexible open-source platform capable of
extracting a large panel of engineered features from medical

images. PyRadiomics is implemented in Python and can be
used standalone or using 3D Slicer. Here, we discuss the
workflow and architecture of PyRadiomics and demonstrate its
application in characterizing lung lesions. Source code, doc-
umentation, and examples are publicly available at www.
radiomics.io. With this platform, we aim to establish a refer-
ence standard for radiomic analyses, provide a tested and
maintained resource, and to grow the community of radiomic
developers addressing critical needs in cancer research. Cancer
Res; 77(21); e104–7. �2017 AACR.

Introduction
Medical imaging is considered one of the top innovations that

transformed clinical cancer care, as it significantly changed how
physicians measure, manage, diagnose, and treat cancer. Imaging
is able to noninvasively visualize the radiographic phenotype of a
tumor before, during, and after treatment. Radiomics refers to the
comprehensive and automated quantification of this radiograph-
ic phenotypeusingdata characterization algorithms (1–3). Radio-
mics can quantify a large panel of phenotypic characteristics, such
as shape and texture, potentially reflecting biologic properties like
intra- and intertumor heterogeneities (4).

Radiomic technologies, based on artificial intelligence (AI)
methods, are either defined using engineered hard-coded features,
which often rely on expert domain knowledge, or on deep
learning methods, which can learn feature representations auto-
matically from data (5). The potential of radiomics has been
shown across multiple tumor types, including brain, head and
neck, cervix, and lung cancer tumors. Furthermore, these data,

extracted from MRI, PET, or CT images, were associated with
several clinical outcomes, and hence, potentially provide comple-
mentary information for decision support in clinical oncology (1).

However, there is a lack of standardization of both feature
definitions and image processing,whichhas been shown tohave a
substantial impact on the reliability of radiomic data (6–8).
Furthermore, many studies use software developed in-house,
often not shared with the public, which makes the reproduction
and comparison of results difficult.

To address this issue, we developed a comprehensive open-
source platform called PyRadiomics, which enables processing and
extraction of radiomic features from medical image data using
a large panel of engineered hard-coded feature algorithms.
PyRadiomics provides a flexible analysis platform with both a
simple and convenient front-end interface in 3D Slicer, a free
open-source platform formedical image computing (9), aswell as
a back-end interface allowing automation in data processing,
feature definition, and batch handling. PyRadiomics is implemen-
ted in Python, a language that has established itself as a popular
open-source language for scientific computing, and can be
installed on any system.

Here, we discuss the workflow and architecture of PyRadiomics
and demonstrate its application in characterizing benign and
malignant lung lesions. Source code, documentation, instruction
videos (see Supplementary Videos S1 and S2), and examples are
available at www.radiomics.io/pyradiomics.html. With this
resource, we aim to establish a reference standard for radiomic
analyses, provide tested and maintained open-source platforms,
and raise awareness among scientists of the potential of radiomics
technologies.

Platform
The PyRadiomics platform can extract radiomic data from

medical imaging (such as CT, PET, MRI) using four main
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steps: (i) loading and preprocessing of the image and seg-
mentation maps; (ii) application of enabled filters; (iii)
calculation of features using the different feature classes;
and (iv) returning results. See Fig. 1A for an illustration of
this process.

Loading and preprocessing
In this step, medical images (e.g., CT, PET, MRI) and

segmentation maps (e.g., performed by radiologist) are to be
loaded into the platform. The large majority of image handl-
ing is done using SimpleITK, which provides a streamlined
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Figure 1.

A, Overview figure of the process of PyRadiomics. First, medical images are segmented. Second, features are extracted using the PyRadiomics platform,
and third, features are analyzed for associations with clinical or biologic factors. B, Stability of radiomics features for variation in manual segmentations
by expert radiologists. C, Heatmap showing expression values of radiomics features (rows) of 429 lesions (columns). Note the four subtypes that
could be identified from the expression values and their associations with malignancy. D, Area under the curve (AUC) showing the performance of the
multivariate biomarker to predict malignancy of nodules.
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interface to the widely used open-source Insight Toolkit
(ITK; ref. 10). This enables PyRadiomics to support a wide
variety of image formats, while also ensuring that much of
the low-level functionality and basic image processing is
thoroughly tested and maintained. For texture and shape
features, several resampling options are included to ensure
isotropic voxels with equal distances between neighboring
voxels in all directions.

Filtering
Features can be calculated on the original image or on images

preprocessed using a choice of several built-in filters. These
include wavelet and Laplacian of Gaussian (LoG) filters, as well
as several simple filters, including square, square root, loga-
rithm, and exponential filters. For the application of the wavelet
and LoG filter, the platform makes use of the PyWavelets and
SimpleITK, respectively. The remaining filters are implemented
using NumPy.

Feature calculation
The platform contains five feature classes: a class for first-

order statistics, a class for shape descriptors, and texture classes
gray level cooccurrence matrix (11), gray level run length
matrix (12, 13), and gray level size zone matrix (14). All
statistic and texture classes can be used for feature extraction
from both filtered and unfiltered images. Shape descriptors are
independent from intensity values and therefore can only be
extracted from unfiltered images. Feature extraction is sup-
ported for both single slice (2D) and whole volume (3D)
segmentations.

PyRadiomics modules
Calculated features are stored and returned in an ordered

dictionary. Every feature is identified by a unique name con-
sisting of the applied filter, the feature class, and feature name.
Besides the calculated features, this dictionary also contains
additional information on the extraction, including current
version, applied filters, settings, and original image spacing.

To enhance usability, PyRadiomics has a modular implemen-
tation, centered around the featureextractor module, which
defines the feature extraction pipeline and handles interaction
with the other modules in the platform. All feature classes are
defined in separate modules. Furthermore, all are inherited
from a base feature extraction class, providing a common
interface. Finally, the platform contains two helper modules,
generalinfo that provides additional extraction information
included in the returned result and the imageoperations module
that implements the functions used during image preprocessing
and filters.

Aside from interactive use in Python scripts through the
featureextractor module, PyRadiomics supports direct usage from
the command line. There are two scripts available, pyradiomics
and pyradiomicsbatch, for single-image and batch processing,
respectively. For both scripts, an additional parameter file can
be used to customize the extraction, and results can be directly
imported into many statistical packages for analysis, including
R and SPSS. In addition, a convenient front-end interface for
PyRadiomics is provided as the "radiomics" extension within 3D
Slicer. All code, including the Slicer extension, documentation,
frequently asked questions, and instruction videos (see Sup-

plementary Videos S1 and S2) are available at www.radiomics.
io/pyradiomics.html. In the Supplementary Information,
detailed descriptions of feature definitions, dataset, and anal-
yses can be found.

Case Study
In a case study, we demonstrated an application of

PyRadiomics for lung lesion characterization to discriminate
between benign and malignant nodules. We used the publicly
available cohort of the Lung Image Database Consortium (15),
which consists of diagnostic and lung cancer screening CT
scans along with marked-up annotated lesions and per-lesion
malignancy rating (i.e., if a nodule is benign or malignant)
from experienced radiologists (Supplementary Methods S1).
From 302 patients, we included 429 distinct lesions in our
analysis, each with four volumetric segmentations and malig-
nancy ratings. In total, 1,120 radiomic features (14 shape
features, 19 first-order intensity statistics features, 60 texture
features, 395 LoG features, and 632 wavelet features) were
extracted from all four delineations of every lesion (Supple-
mentary Methods S2–S4).

To assess the effect variations in the manual segmentations
on radiomic feature values, we calculated the stability for each
of the features extracted from four segmentations performed by
expert radiologists. This stability was calculated using intraclass
correlation coefficient (ICC; Fig. 1B). High stability (median �
SD: ICC > 0.8) was observed for LoG (ICC ¼ 0.91 � 0.11), first-
order intensity statistics (ICC ¼ 0.88 � 0.13), and texture
features (ICC ¼ 0.91 � 0.11), whereas shape (ICC ¼ 0.60 �
0.31) and wavelet (ICC ¼ 0.63 � 0.23) features showed
moderate stability, which indicates their sensitivity toward
delineation variability.

Selecting all features with high stability (ICC > 0.8) resulted in
535 radiomic features (5 shape features, 14 first-order intensity
statistics features, 48 texture features, 310 LoG features, and 158
wavelet features). Figure 1C displays unsupervised clustering of
the standardized expression values of the 535 stable radiomic
features (rows) in 429 nodules (columns). We observed four
distinct clusters of lesions with similar expression values. Com-
paring these clusters with lesion malignancy status, we observed
significant difference between them (P ¼ 2.56e�24, x2 test).
Ninety-two percent (n ¼ 81) of the samples of cluster S1 (n ¼
88) were malignant, whereas 95% (n ¼ 38) of the samples of
cluster S2 (n¼ 40) were benign. For clusters S3 (n¼ 143) and S4
(n¼158), the proportionofmalignant sampleswas 54%(n¼78)
and 34% (n ¼ 53), respectively. These results demonstrate asso-
ciations between imaging-based subtypes and malignancy status
of lung lesions.

To evaluate the performance of a multivariate imaging bio-
marker, we divided the cohort into training (n ¼ 214) and
validation (n ¼ 215). Using minimum redundancy maximum
relevance, we selected 25 stable radiomic features from the train-
ing cohort (Supplementary Table S1). A multivariate biomarker
was developed by fitting selected features into a random forest
classifier, basedon the trainingdata. The biomarker demonstrated
strong and significant performance to characterize lung nodules
[area under the curve ¼ 0.79 (0.73–0.85); Noether test, P ¼
4.12e�22] on the validation cohort (Fig. 1D). More details on
features extraction and analysis methods are provided in the
Supplementary Material.
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Conclusions
PyRadiomics provides a flexible radiomic quantification plat-

form, with a simple and convenient front-end interface in 3D
Slicer, as well as a back-end interface within Python allowing
automation in data processing, feature definition, and batch
handling. By providing a tested and maintained open-source
radiomics platform, we aim to establish a reference standard for
radiomic analyses promoting reproducible science within the
quantitative imaging field, to raise awareness among scientists
of this platform to support their work, and to provide a practical
go-to resource. By doing so, we hope to grow the community of
radiomic technology developers to address critical needs in cancer
research.
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