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1Artificial Intelligence (AI) has recently made substantial strides in perception, the 
interpretation of sensory information, allowing machines to better represent and interpret 
complex data. This has led to major advances in applications ranging from web search 
and self-driving vehicles to natural language processing and computer vision - tasks that 
up until a few years ago could only be done by humans1. Deep learning (DL) is a subset 
of machine learning (ML) that is based on a neural network structure loosely inspired by 
the human brain. Such structures learn discriminative features from data automatically, 
giving them the ability to approximate very complex nonlinear relationships. While 
most earlier AI methods have led to applications with sub-human performance, recent 
deep learning algorithms are able to match and even surpass humans in task-specific 
applications2–5. This owes to recent advances in AI research, the massive amounts of 
digital data now available to train algorithms, as well as modern powerful computational 
hardware (Figure 1). Deep learning methods have been able to defeat humans in the 
strategy board game of Go, an achievement that was previously thought to be decades 
away given the highly complex game space and massive number of potential moves6. 
Following the trend towards a human-level general AI, researchers predict that AI will 
automate many tasks including translating languages, writing best-selling books, and 
performing surgery - all within the coming decades7. 

 Artificial Intelligence (AI) has recently made substantial strides in perception, the  interpret  ation 
 of  sensory  information, allowing machines to better  represent and interpret complex data.  This 
 has led to major advances in applications ranging from web search and self-driving vehicles to 
 natural language processing and computer vision - tasks that up until a few years ago could 
 only be done by humans  1  . Deep learning (DL) is a subset  of machine learning (ML) that is 
 based on a neural network structure loosely inspired by the human brain. Such structures learn 
 discriminative features from data automatically, giving them the ability to approximate very 
 complex nonlinear relationships. While most earlier AI methods have led to applications with 
 sub-human performance, recent deep learning algorithms are able to match and even surpass 
 humans in task-specific applications  2–5  . This owes  to recent advances in AI research, the 
 massive amounts of digital data now available to train algorithms, as well as modern powerful 
 computational hardware  (Figure 1)  . Deep learning methods  have been able to defeat humans 
 in the strategy board game of Go, an achievement that was previously thought to be decades 
 away given the highly complex game space and massive number of potential moves  6  . Following 
 the trend towards a human-level general AI, researchers predict that AI will automate many 
 tasks including translating languages, writing best-selling books, and performing surgery - all 
 within the coming decades  7  . 

 Figure 1:  The recent rise of AI applications is mainly  driven by the massive amounts of digital 
 data now available to us, modern powerful computational hardware, as well as advances in AI 
 methodologies, namely deep learning. 

 This thesis explores AI applications within oncology. Cancer's ever evolving nature and 
 interaction with its surroundings continue to challenge patients, clinicians, and researchers alike. 
 One of its deadliest forms appears in the lungs, leading to the most cancer-related mortalities 
 worldwide  8  . Lung cancer is also the second most commonly  diagnosed cancer in both men and 
 women  9  with non-small cell lung cancer (NSCLC) comprising  85% of cases  10  .  Medical imaging 
 data is often central to diagnosing, prognosticating, and treating NSCLC patients. These 
 non-invasive images, however, often offer information that goes beyond that captured through 
 routine radiographic evaluation by experts. The aforementioned advances in AI methods have 
 enabled the high-throughput extraction, and subsequent processing, of high-dimensional 
 quantitative features from images. More specifically, this dialogue between AI and medical 
 imaging has been recently manifested in radiomics. 
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Figure 1. The recent rise of AI applications is mainly driven by the massive amounts of digital data now available to us, 
modern powerful computational hardware, as well as advances in AI methodologies, namely deep learning.

This thesis explores AI applications within oncology. Cancer’s ever evolving nature 
and interaction with its surroundings continue to challenge patients, clinicians, and 
researchers alike. One of its deadliest forms appears in the lungs, leading to the most 
cancer-related mortalities worldwide8. Lung cancer is also the second most commonly 
diagnosed cancer in both men and women9 with non-small cell lung cancer (NSCLC) 
comprising 85% of cases10. Medical imaging data is often central to diagnosing, 
prognosticating, and treating NSCLC patients. These non-invasive images, however, 
often offer information that goes beyond that captured through routine radiographic 
evaluation by experts. The aforementioned advances in AI methods have enabled 
the high-throughput extraction, and subsequent processing, of high-dimensional 
quantitative features from images. More specifically, this dialogue between AI and 
medical imaging has been recently manifested in radiomics.
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Radiomics is a data-centric field involving the extraction and mining of quantitative 
features as a means to quantify the solid tumor radiographic phenotype11. It hypothesizes 
that radiographic phenotypes represent underlying pathophysiologies and are thus 
capable of discriminating between disease forms for predicting prognosis and therapeutic 
response12. Radiomics research has primarily relied on explicitly programmed algorithms 
that extract engineered (hand-crafted) imaging features. Such features commonly 
represent tumor shape, voxel intensity information (statistics), and patterns (textures). 
More specifically within oncology, Radiomics has demonstrated success in stratifying 
tumor histology13, tumor grades14, and clinical outcomes11. Additionally, associations 
with underlying gene expression patterns have also been reported15. Given these 
associations, radiomic features have been used to build prognostic and predictive models 
making use of statistical machine learning algorithms coupled with feature selection 
strategies16. More recent work, however, has shifted towards deep learning as the de facto 
machine learning approach17. 

 Radiomics is a data-centric field involving the extraction and mining of quantitative 
 features as a means to quantify the solid tumor radiographic phenotype  11  . It hypothesizes that 
 radiographic phenotypes represent underlying pathophysiologies and are thus capable of 
 discriminating between disease forms for predicting prognosis and therapeutic response  12  . 
 Radiomics research has primarily relied on explicitly programmed algorithms that extract 
 engineered (hand-crafted) imaging features. Such features commonly represent tumor shape, 
 voxel intensity information (statistics), and patterns (textures). More specifically within oncology, 
 Radiomics has demonstrated success in stratifying tumor histology  13  , tumor grades  14  , and 
 clinical outcomes  11  . Additionally, associations with  underlying gene expression patterns have 
 also been reported  15  . Given these associations, radiomic  features have been used to build 
 prognostic and predictive models making use of statistical machine learning algorithms coupled 
 with feature selection strategies  16  . More recent work,  however, has shifted towards deep 
 learning as the  de facto  machine learning approach  17  . 

 Figure 2:  Artificial intelligence methods in medical  imaging. This schematic outlines two 
 methods. The first method relies on engineered features extracted from regions of interest on 
 the basis of expert knowledge. The most robust features are selected and fed into machine 
 learning classifiers. The second method uses deep learning where discriminatory features are 
 learned automatically from data. 

 Deep learning has shown great promise in areas that rely on imaging data including 
 radiology  18  , pathology  19  , dermatology  20  , and ophthalmology  21  to name a few. In lieu of the often 
 subjective visual assessment of images by trained clinicians, deep learning automatically 
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Figure 2. Artificial intelligence methods in medical imaging. This schematic outlines two methods. The first method 
relies on engineered features extracted from regions of interest on the basis of expert knowledge. The most robust features 
are selected and fed into machine learning classifiers. The second method uses deep learning where discriminatory 
features are learned automatically from data.

Deep learning has shown great promise in areas that rely on imaging data including 
radiology18, pathology19, dermatology20, and ophthalmology21 to name a few. In lieu 
of the often subjective visual assessment of images by trained clinicians, deep learning 
automatically identifies complex patterns in data and hence provides evaluations in a 
quantitative manner (Figure 2). Compared to feature engineering approaches, crafting 
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1and selecting the most robust features is inherent to deep learning networks and thus 
they require little to no human input. Deep learning methods have outperformed 
their engineered feature counterparts in many tasks including mammographic lesion 
detection22, mortality prediction23, and multimodal image registration24. 

This thesis explores deep learning applications in medical imaging, specifically those 
pertaining to NSCLC patients. Part 1 introduces a wide range of AI applications within 
clinical oncology, oncology-focused radiology, as well as radiotherapy. Part 2 focuses on 
experimental studies for tumor characterization in imaging data. Therein, the utility 
of deep learning in stratifying NSCLC patients from single and longitudinal images is 
explored. In these studies, imaging data is used to predict prognostic endpoints such 
as survival and distant metastasis, as well as response to main and adjuvant therapy. 
Additionally, therapeutic applications in radiotherapy planning are also examined, 
including the automated segmentation of target tumors and lymph nodes in imaging 
data. Part 3 highlights best practices in conducting experimental studies, both on the data 
science and computational methodology fronts. Finally, part 4 outlines AI applications 
in global health.

PART 1: Artificial Intelligence in Cancer Imaging

Chapter 2 outlines how the clinical oncology practice is experiencing rapid growth in 
data that are collected to enhance cancer care. Given the recent advances in the field of 
AI, there is now a computational basis to integrate and synthesize this growing body 
of multi-dimensional data, deduce patterns, and predict outcomes to improve shared 
patient and clinician decision-making. This chapter explores a pathway of clinical cancer 
care touchpoints starting from prevention and early screening to response assessment 
and follow up (Figure 3). It then analyzes narrow task-specific AI applications in each of 
these touchpoints. Mapping the field in such a manner helps formalize AI interventions 
as a combination of three ingredients: 1. a specific clinical use case within one of the 
touchpoints, 2. a specific data type ranging from text to imaging, and finally 3. the 
appropriate ML method.

Chapter 3 discusses AI applications particularly pertaining to cancer imaging. 
Historically, in radiology practice, trained physicians visually assessed medical images 
for the detection, characterization and monitoring of tumors. AI methods excel at 
automatically recognizing complex patterns in imaging data and providing quantitative, 
rather than qualitative, assessments of radiographic characteristics. This chapter outlines 
two AI methods pertaining to image-based tasks. The first method relies on engineered 
features (e.g. volume, shape, texture, intensity) extracted from regions of interest on the 
basis of expert knowledge. The most robust features are selected and fed into traditional 
ML classifiers (e.g. support vector machines and random forests). The second method 
uses deep learning and comprises several layers where feature extraction, selection and 
ultimate classification are performed automatically and simultaneously during training. 
The chapter then moves to discuss three main clinical radiology tasks in oncology: 
abnormality detection, characterization, and subsequent monitoring of change. This is 
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followed by an investigation into technologies currently being utilized in the clinic and 
research efforts aimed at integrating AI developments into each of these tasks.

 change. This is followed by an investigation into technologies currently being utilized in the clinic 
 and research efforts aimed at integrating AI developments into each of these tasks. 

 Figure 3:  An example cancer patient pathway converges  with an ever-increasing data stream. 
 Potential AI applications and exemplary clinical users at each touchpoint are also illustrated. 

 Chapter 4  shifts the discussion to AI applications  in cancer therapeutics, namely 
 radiotherapy (RT). RT has the potential to be transformed by AI given its multifaceted, highly 
 technical nature with heavy reliance on digital data processing and computer software. This 
 paves the way for improved accuracy, precision, efficiency, and overall quality for cancer 
 patients. The chapter provides a high-level overview of the RT workflow starting from patient 
 evaluation and imaging steps to treatment planning and RT plan quality assurance. It then 
 outlines the impact that AI may have on each of these steps  (Figure 4)  . Additionally, the roles of 
 RT medical professionals (radiation oncologists, medical physicists, dosimetrists, therapists) are 
 discussed, as well as how these roles may evolve alongside clinical task automation. 

 PART 2: PROGNOSTIC AND THERAPEUTIC DEEP LEARNING APPLICATIONS 

 Chapter 5  explores the utility of deep learning in  the prognostication of lung cancer patients. 
 Today, standard prognostication involves tumor staging, which in turn is based on a relatively 
 coarse and discrete stratification. Radiographic medical images offer patient- and tumor-specific 
 information that could be used to complement such clinical prognostic efforts. 

 In this chapter, an analysis setup is designed comprising seven independent datasets 
 across five institutions totaling 1194 NSCLC patients imaged with computed tomography (CT) 
 and treated with either radiotherapy or surgery. We evaluated the prognostic signature of 
 quantitative imaging features extracted through deep learning networks, and assessed its ability 
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Figure 3. An example cancer patient pathway converges with an ever-increasing data stream. Potential AI applications 
and exemplary clinical users at each touchpoint are also illustrated.

Chapter 4 shifts the discussion to AI applications in cancer therapeutics, namely 
radiotherapy (RT). RT has the potential to be transformed by AI given its multifaceted, 
highly technical nature with heavy reliance on digital data processing and computer 
software. This paves the way for improved accuracy, precision, efficiency, and overall 
quality for cancer patients. The chapter provides a high-level overview of the RT 
workflow starting from patient evaluation and imaging steps to treatment planning and 
RT plan quality assurance. It then outlines the impact that AI may have on each of 
these steps (Figure 4). Additionally, the roles of RT medical professionals (radiation 
oncologists, medical physicists, dosimetrists, therapists) are discussed, as well as how 
these roles may evolve alongside clinical task automation.

PART 2: Prognostic and Therapeutic Deep Learning Applications

Chapter 5 explores the utility of deep learning in the prognostication of lung cancer 
patients. Today, standard prognostication involves tumor staging, which in turn is based 
on a relatively coarse and discrete stratification. Radiographic medical images offer 
patient- and tumor-specific information that could be used to complement such clinical 
prognostic efforts.

In this chapter, an analysis setup is designed comprising seven independent datasets across 
five institutions totaling 1194 NSCLC patients imaged with computed tomography 
(CT) and treated with either radiotherapy or surgery. We evaluated the prognostic 
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1signature of quantitative imaging features extracted through deep learning networks, 
and assessed its ability to stratify patients into low and high mortality risk groups as 
per a two-year overall survival cut off. In patients treated with surgery, deep learning 
networks significantly outperformed models based on predefined tumor features as 
well as volume and maximum diameter. In addition to highlighting image regions with 
prognostic influence, we also evaluated deep learning features for robustness against 
physiological imaging artifacts and input variability, as well as correlated them with 
molecular information through gene expression data.

 to stratify patients into low and high mortality risk groups as per a two-year overall survival cut 
 off. In patients treated with surgery, deep learning networks significantly outperformed models 
 based on predefined tumor features as well as volume and maximum diameter. In addition to 
 highlighting image regions with prognostic influence, we also evaluated deep learning features 
 for robustness against physiological imaging artifacts and input variability, as well as correlated 
 them with molecular information through gene expression data. 

 Figure 4:  A general overview of the RT workflow with  brief descriptions of expected AI 
 applications in each step. 

 Chapter 6  proposes a deep learning approach to predicting  NSCLC tumor histology 
 from non-invasive standard-of-care CT data. Tumor histology is an important predictor of 
 therapeutic response and outcomes in lung cancer. Tissue sampling for pathologist review is the 
 most reliable method for histology classification, however, recent advances in deep learning for 
 medical image analysis allude to the utility of radiologic data in further describing disease 
 characteristics and for risk stratification. 

 In this chapter, we trained and validated convolutional neural networks (CNNs) on a 
 dataset comprising 311 early-stage NSCLC patients receiving surgical treatment, with a focus 
 on the two most common histological types: adenocarcinoma and Squamous Cell Carcinoma. 
 The CNNs were able to predict tumor histology with an AUC of 0.71(  P   = 0.018). We also found 
 that using ML classifiers such as k-nearest neighbors and support vector machines on 
 CNN-derived quantitative radiomics features yielded comparable discriminative performance. 
 Our best performing CNN functioned as a robust probabilistic classifier in heterogeneous test 
 sets, with qualitatively interpretable visual explanations to its predictions. 
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Figure 4. A general overview of the RT workflow with brief descriptions of expected AI applications in each step.

Chapter 6 proposes a deep learning approach to predicting NSCLC tumor histology 
from non-invasive standard-of-care CT data. Tumor histology is an important predictor 
of therapeutic response and outcomes in lung cancer. Tissue sampling for pathologist 
review is the most reliable method for histology classification, however, recent advances 
in deep learning for medical image analysis allude to the utility of radiologic data in 
further describing disease characteristics and for risk stratification. 

In this chapter, we trained and validated convolutional neural networks (CNNs) on a 
dataset comprising 311 early-stage NSCLC patients receiving surgical treatment, with 
a focus on the two most common histological types: adenocarcinoma and Squamous 
Cell Carcinoma. The CNNs were able to predict tumor histology with an AUC of 
0.71(P = 0.018). We also found that using ML classifiers such as k-nearest neighbors 
and support vector machines on CNN-derived quantitative radiomics features yielded 
comparable discriminative performance. Our best performing CNN functioned as a 
robust probabilistic classifier in heterogeneous test sets, with qualitatively interpretable 
visual explanations to its predictions. 
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Chapter 7 evaluates deep learning models for predicting clinical outcomes through 
analyzing time-series CT images of locally advanced NSCLC patients. While 
qualitatively tracking lesions over space and time may be trivial, the development 
of clinically-relevant, automated methods that incorporate serial imaging data is far 
more challenging. The models, based on a combination of CNNs and recurrent neural 
networks (RNNs), were found to be significantly predictive of survival and cancer-
specific outcomes (progression, distant metastases and local-regional recurrence). Model 
performance was enhanced with each additional follow-up scan. The models stratified 
patients into low and high mortality risk-groups, which were found to be significantly 
associated with overall-survival.

Chapter 8 explores DL applications in RT treatment planning. While AI methods have 
demonstrated great potential in streamlining clinical RT tasks, most studies are confined 
to in silico validation in small internal cohorts, lacking data on real-world clinical utility. 
We clinically validated DL models for localizing and segmenting primary NSCLC 
tumors and involved lymph nodes in CT images.

In this chapter, DL models were validated across four focus areas. Benchmarking: 
Models showed an improvement over the interobserver benchmark (P < .01), and were 
within the intraobserver benchmark. Primary Validation: Performance on internal data 
segmented by the same expert was volumetric dice (VD) 0.83 [0.82,0.85], within the 
interobserver benchmark. Performance on internal data segmented by other experts was 
VD 0.70 [0.67,0.73], worse than the interobserver benchmark (P < .0001). Similar 
results were observed on subsequent external validation data, including clinical trial 
and diagnostic radiology data. Secondary Validation: Models were found to be stable 
across separate images of the same subject, but tend to underestimate tumor volume 
by an average of 12%. Human subject experiments: We found no significant differences 
between de novo and AI-assisted segmentations. AI-assistance led to a 65% reduction in 
segmentation time (P < .0001).

PART 3: AI Methods and Best Practices

Chapter 9 discusses two underlying radiomics methodologies used in treatment 
response prediction and prognosis in RT, with broader implications across other cancer 
therapies. More specifically, it compares and contrasts traditional radiomics and its 
use of handcrafted features with deep learning radiomics where learning of relevant 
radiographic features is automated. The chapter explores multiple challenges shared 
across both methods, including reproducibility and over-fitting on small datasets. It also 
highlights the potential utility of deep learning interpretability efforts in decoding new 
insights from cancer images and non-intuitive information that is uncharted thus far. 

Chapter 10 explores means to provide better transparency to datasets. Data is a 
fundamental ingredient in building AI models, and there are direct correlations between 
data quality and model robustness, fairness, and utility. This chapter introduces the 
Dataset Nutrition Label, a diagnostic framework providing a distilled yet comprehensive 
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1overview of dataset “ingredients”. The label is designed to be flexible and adaptable; 
it comprises a diverse set of qualitative and quantitative modules generated through 
multiple statistical and probabilistic modelling backends. Consulting such a label 
prior to AI model development promotes vigorous data interrogation practices, aids in 
recognizing inconsistencies and imbalances, provides an improved means to selecting 
more appropriate datasets for specific tasks, and subsequently increases the overall 
quality of AI models. 

Chapter 11 identifies obstacles hindering transparent and reproducible AI research, 
including the absence of sufficiently documented methods and computer code. These 
shortcomings limit the evidence required for others to prospectively validate and 
clinically implement studies, while undermining their scientific value. The chapter also 
provides potential solutions with implications for the broader field.

PART 4: Beyond Cancer Imaging

Chapter 12 explores AI applications in global health, given the limited discussions 
around what AI can bring to medical practice in low- and middle-income countries 
where workforce shortages and limited resources constrain the access to and delivery of 
care. The chapter outlines the important role AI may play in addressing global healthcare 
inequities at three levels: the individual patient, health system, and population levels. 

Finally, chapter 13 provides a general discussion of the results presented in this thesis 
and related future perspectives.
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Abstract

Clinical oncology is experiencing rapid growth in data that are collected to enhance 
cancer care. With recent advances in the field of Artificial Intelligence (AI), there is now a 
computational basis to integrate and synthesize this growing body of multi-dimensional 
data, deduce patterns, and predict outcomes to improve shared patient and clinician 
decision-making. While there is high potential, significant challenges remain. In this 
perspective, we propose a pathway of clinical, cancer care touchpoints for narrow-task 
AI applications and review a selection of applications. We describe the challenges faced 
in the clinical translation of AI and propose solutions. We also suggest paths forward in 
weaving AI into individualized patient care, with an emphasis on clinical validity, utility, 
and usability. By illuminating these issues in the context of current AI applications for 
clinical oncology, we hope to help advance meaningful investigations that will ultimately 
translate to real-world clinical use.
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Introduction

Over the last decade, there has been a resurgence of interest for artificial intelligence 
(AI) applications in medicine. This is driven by the advent of deep learning algorithms, 
computing hardware advances, and the exponential growth of data that are being 
generated and used for clinical decision making1–3. Oncology is particularly poised for 
transformative changes brought on by AI, given the proven advantages of individualized 
care and recognition that tumors and their response rates differ vastly from person to 
person4,5. In oncology, much like other medical fields, the overarching goal is to increase 
quantity and quality of life, which, from a practical standpoint, entails choosing the 
management strategy that optimizes cancer control and minimizes toxicity. 

As multidimensional data is increasingly being generated in routine care, AI can support 
clinicians to form an individualized view of a patient along their care pathway and 
ultimately guide clinical decisions. These decisions rely on the incorporation of disparate, 
complex datastreams, including clinical presentation, patient history, tumor pathology 
and genomics, as well as medical imaging, and marrying these data to the findings of 
an ever-growing body of scientific literature. Furthermore, these datastreams are in a 
constant state of flux over the course of a patient’s trajectory. With the emergence of AI, 
specifically deep learning 2, there is now a computational basis to integrate and synthesize 
these data, to predict where the patient’s care path is headed, and ultimately improve 
management decisions. 

While there is much reason to be hopeful, numerous challenges remain to the successful 
integration of AI in clinical oncology. In analyzing these challenges, it is critical to view 
the promise, success, and failure of AI not only in generalities, but on a clinical case-by-
case basis. Not every cancer problem is a nail to AI’s hammer; its value is not universal, 
but inextricably linked to the clinical use case6. The current evidence suggests that 
clinical translation of the vast majority of published, high-performing AI algorithms 
remains in a nascent stage7. Furthermore, we posit that the imminent value of AI in 
clinical oncology is in the aggregation of narrow task-specific, clinically validated and 
meaningful applications at clinical “touchpoints” along the cancer care pathway, rather 
than general, all-purpose AI for end-to-end decision-making. As the global cancer 
incidence increases and the financial toxicity of cancer care is increasingly recognized, 
many societies are moving towards value-based care systems8,9. With development of 
these systems, there will be increasing incentive for the adoption of data-driven tools - 
potentially powered by AI - that can lead to reduced patient morbidity, mortality, and 
healthcare costs10.

Here, we will describe the key concepts of AI in clinical oncology and review a selection of 
AI applications in oncology from the lens of a patient moving through clinical touchpoints 
along the cancer care path. We will therein describe the challenges faced in the clinical 
translation of AI and propose solutions, and finally suggest paths forward in weaving 
AI into individualized patient cancer care. By illuminating these issues in the context of 
current AI applications for clinical oncology, we hope to provide concepts to help drive 
meaningful investigations that will ultimately translate to real-world clinical use.
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Artificial Intelligence: From Shallow to Deep Learning

The concept of AI, formalized in the 1950’s, was originally defined as the ability of a 
machine to perform a task normally associated with human performance11. Within this 
field, the concept of machine learning was born, which refers to an algorithm’s ability 
to learn data and perform tasks without explicit programming12. Machine learning 
research has led to development and use of a number of “shallow” learning algorithms, 
including earlier generalized linear models like logistic regression, Bayesian algorithms, 
decision-trees, and ensemble methods13,14. In the simplest of these models, such as 
logistic regression, input variables are assumed to be independent of one another, and 
individual weights are learned for each variable to determine a decision boundary that 
optimally separates classes of labelled data. More advanced shallow learning algorithms, 
such as random forests, allow for the characterization and weighting of input variable 
combinations and relationships, thus learning decision boundaries that can fit more 
complex data.

Deep learning is a newer subset of machine learning, which has the ability to learn 
patterns from raw, unstructured input data by incorporating layered neural networks2. 
In supervised learning, which represents the most common form within medical AI, 
a neural network will generate a prediction from this input data and compare it to 
a “ground truth” annotation. This discrepancy between prediction and ground truth 
is encapsulated in a loss function which is then propagated back through the neural 
network, and over numerous cycles, the model is optimized to minimize this loss 
function. 

For the purpose of clinical application, we can view AI as a spectrum of algorithms, the 
utility of which are inextricably linked to the characteristics of the task under investigation. 
Thorough understanding of the data stream is necessary to choose, develop, and optimize 
an algorithm. In general, deep learning networks offer nearly limitless flexibility in input, 
output, architectural and parameter design, and thus are able to fit vast quantities of 
heterogeneous and unstructured data never before possible15. Specifically, deep learning 
has a high propensity to learn non-linear and high-dimensional relationships in multi-
modal data including time series data, pixel-by-pixel imaging data, unstructured text 
data, audio/video data, or biometric data. Data with significant spatial and temporal 
heterogeneity are particularly well-suited for DLNNs16. On the other hand, this power 
comes at the expense of limited interpretability and a proclivity for overfitting data if not 
trained on a large enough dataset17. While traditional machine learning and statistical 
modeling can perform quite well at certain predictive tasks, they generally struggle to 
fit unprocessed, unstructured, and high dimensional data compared to deep learning. 
Therefore, despite its limitations, deep learning has opened the door to big data analysis 
in oncology and promises to advance clinical oncology, so long as certain pitfalls in 
development and implementation can be overcome.
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Cancer Care as a Mathematical Optimization Problem

To appreciate the promise surrounding AI applications for clinical oncology, it is 
essential to incorporate a mathematical lens to the patient care path through cancer risk 
prediction, screening, diagnosis and treatment. From the AI perspective, the patient 
path is an optimization problem, wherein heterogeneous data streams converge as inputs 
into a mathematical scaffold (i.e. machine learning algorithms) (Figure 1). This scaffold 
is iteratively adjusted during training until the desired output can be reliably predicted 
and an action can be taken. In this setting, an ever-growing list of inputs include patient 
clinical presentation, past medical history, genomics, imaging, and biometrics, and can 
be roughly subdivided as tumor, host, or environmental factors. The complexity of the 
algorithms is often driven by the quantity, heterogeneity, and dimensionality of such 
data. Outputs are centered, most broadly, on increasing survival and/or quality of life, 
but are often evaluated by necessity as a series of more granular surrogate endpoints.

 CANCER CARE AS A MATHEMATICAL OPTIMIZATION PROBLEM 

 To appreciate the promise surrounding AI applications for clinical oncology, it is essential to 
 incorporate a mathematical lens to the patient care path through cancer risk prediction, 
 screening, diagnosis and treatment. From the AI perspective, the patient path is an optimization 
 problem, wherein heterogeneous data streams converge as inputs into a mathematical scaffold 
 (i.e. machine learning algorithms)  (Figure 1)  . This  scaffold is iteratively adjusted during training 
 until the desired output can be reliably predicted and an action can be taken. In this setting, an 
 ever-growing list of inputs include patient clinical presentation, past medical history, genomics, 
 imaging, and biometrics, and can be roughly subdivided as tumor, host, or environmental 
 factors. The complexity of the algorithms is often driven by the quantity, heterogeneity, and 
 dimensionality of such data. Outputs are centered, most broadly, on increasing survival and/or 
 quality of life, but are often evaluated by necessity as a series of more granular surrogate 
 endpoints. 

 Figure 1:  Narrow task-specific AI applications addressing  a specific touchpoint along the patient 
 pathway, and utilizing a specific data type and AI method. 
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Figure 1. Narrow task-specific AI applications addressing a specific touchpoint along the patient pathway, and utilizing 
a specific data type and AI method. 
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Datastreams for Clinical Oncology

The arc of research in oncology, increasing data generation, and advances in 
computational technology have collectively resulted in a frameshift from low-
dimensional to increasingly high-dimensional patient data representation. Earlier data 
and computational limitations often necessitated reducing unstructured patient data 
(e.g. medical images and biopsies) into a set of human-digestible discrete measures of 
disease extent. One notable example of such simplification lies within cancer staging 
systems, most prominently the AJCC TNM classification18. In 1977, with only three 
inputs commonly available - tumor size, nodal involvement, and presence of metastasis 
- the first edition AJCC TNM staging became standard of care for risk-stratification and 
decision-management in oncology. Over the subsequent decades, with the incorporation 
of other discrete data points, predictive nomograms could be generated using simple 
linear models, which have found practical use in certain situations19–22. More recently, 
improved methods to extract and analyze existing data coupled with new data streams 
and a growing understanding of inter- and intra-tumoral heterogeneity, have all led 
to the development of increasingly complex and specific stratification models. Key 
examples of novel data streams introduced over the past two decades are the Electronic 
Health Record, The Cancer Genome Atlas23, The Cancer Imaging Archive24, and the 
Project GENIE initiative25. Key examples of advanced risk-stratification and prediction 
models are the prostate cancer Decipher score26 and breast cancer OncotypeDx score27, 
which utilize discrete genomic data and shallow machine learning algorithms to form 
clinically validated predictive models. Useful oncology datastreams, roughly following 
historical order of availability, include: clinical presentation, tumor stage, histopathology, 
qualitative imaging, tumor genomics, patient genomics, quantitative imaging, liquid 
biopsies, electronic medical record mining, wearable devices, and digital behavior 
(Figure 1). Furthermore, as a patient moves along the cancer care pathway, the number 
of influxing, intra-patient datastreams grows. With each step through the pathway, new 
data is generated out of the pathway with the potential to be reincorporated at a later 
time back into the pathway (Figure 2).

As our biological knowledge base and datastreams grow in clinical oncology, machine 
learning algorithms can be deployed to learn patterns that apply to more and more 
precise patient groups and generate predictions to guide treatment for the next, “unseen” 
patient. As we assimilate more data, optimal cancer care, i.e. the care that results in the 
best survival and quality of life for a patient, inevitably becomes precision care, assuming 
we have the necessary tools to fully utilize the data. Here, at this intersection of data 
complexity and precision care in clinical oncology, is where the promise of AI has been 
so tantalizing, though as of yet, unfulfilled.
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 Figure 2:  An example cancer patient pathway converges  with an ever-increasing data stream. 
 Potential AI applications and exemplary clinical users at each touchpoint are also illustrated. 

 AI APPLICATIONS AND TOUCHPOINTS ALONG THE CLINICAL ONCOLOGY CARE PATH 

 We propose that AI development for clinical oncology should be approached from patient and 
 clinician perspectives across the following cancer care touchpoints: Risk Prediction, Screening, 
 Diagnosis, Prognosis, Initial Treatment, Response Assessment, Subsequent Treatment, and 
 Follow-up  (Figure 2  ). The clinical touchpoint pathway  shares features with the “cancer 
 continuum,”  28  though it consists of more granular,  patient and clinician decision-oriented points 
 of contact for AI to add clinical benefit.  Each of these touchpoints involves a critical series of 
 decisions for oncologists and patients to make and yields a use-case for AI to provide an 
 incremental benefit. Furthermore, touchpoint details will vary by cancer subtype. Within these 
 touchpoints, ideal AI use-cases are ones with significant unmet need and large available 
 datasets. In the context of supervised machine learning, these datasets require robust and 
 accurate annotation to form a reliable “ground-truth” on which the AI system can train. 

 NARROW TASKS WITH HIGH RELIABILITY 

 As clinical oncology datastreams increase in complexity, the tools needed to discern patterns 
 from these data are necessarily more complex, as well. Amidst this flood of heterogeneous 
 intra-patient  data, there is a relative dearth of  inter-patient  data which is needed to train large 
 scale models. Therefore, to accumulate the training data required for generalizable models, it 
 will likely be more fruitful to target and evaluate individual AI models towards specific 
 datastreams at a particular touchpoint along the care pathway. 
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Figure 2. An example cancer patient pathway converges with an ever-increasing data stream. Potential AI applications 
and exemplary clinical users at each touchpoint are also illustrated.

AI Applications and Touchpoints Along the Clinical Oncology Care Path

We propose that AI development for clinical oncology should be approached from 
patient and clinician perspectives across the following cancer care touchpoints: Risk 
Prediction, Screening, Diagnosis, Prognosis, Initial Treatment, Response Assessment, 
Subsequent Treatment, and Follow-up (Figure 2). The clinical touchpoint pathway 
shares features with the “cancer continuum,”28 though it consists of more granular, patient 
and clinician decision-oriented points of contact for AI to add clinical benefit. Each 
of these touchpoints involves a critical series of decisions for oncologists and patients 
to make and yields a use-case for AI to provide an incremental benefit. Furthermore, 
touchpoint details will vary by cancer subtype. Within these touchpoints, ideal AI use-
cases are ones with significant unmet need and large available datasets. In the context of 
supervised machine learning, these datasets require robust and accurate annotation to 
form a reliable “ground-truth” on which the AI system can train. 

Narrow Tasks with High Reliability

As clinical oncology datastreams increase in complexity, the tools needed to discern 
patterns from these data are necessarily more complex, as well. Amidst this flood of 
heterogeneous intra-patient data, there is a relative dearth of inter-patient data which is 
needed to train large scale models. Therefore, to accumulate the training data required 
for generalizable models, it will likely be more fruitful to target and evaluate individual 
AI models towards specific datastreams at a particular touchpoint along the care pathway.
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It is tempting to think that, given the increasing data streams that encompass multiple 
patient characteristics and outcomes, one could develop a unifying, dynamic model 
to synthesize and drive precision oncology, developing a “virtual-guide” of sorts for 
the oncologist and patient29. Analogies are often made to transformative technologies, 
such as self-driving cars and social media recommendations that leverage powerful 
neural networks on top of streams composed of billions of incoming data points, to 
predict real-time outcomes and continually improve performance. While in theory, 
this strategy could one day be deployed in a clinical setting, there are vast differences 
between these domains that question whether or not we should or even could pursue 
this strategy currently. One of the most glaring differences between the healthcare and 
technology domains, in terms of AI application, is the striking difference in data quality 
and quantity. While there has been a sea change in the collection of data within the 
healthcare field over the past decade, driven by the adoption of the Electronic Health 
Record, datasets still remain virtually siloed, intensely regulated, and, particularly in 
cancer care, much too small to leverage the most powerful AI algorithms available30,31. 
One of the most high-profile of these endeavors, IBM’s Watson Oncology project, has 
attempted to develop a broad prediction machine to guide cancer care, but has been 
limited by suboptimal concordance with human oncologists’ recommendations and 
subsequent distrust32–34. 

As our biological perspective has evolved, we now know that cancer is made up of 
thousands of distinct entities that will follow different trajectories, each with different 
treatment strategies35,36. In computational model development, there is thought to be a 
bare minimum number of data samples required for each model input feature37. As we 
seek to make recommendations more and more bespoke, it becomes more challenging 
to accrue the quantity of training data necessary to leverage complex algorithms. 
Fortunately, this data gap in healthcare is well-recognized, and a number of initiatives 
have been proposed to streamline and unify data collection38. However, given the 
innately heterogeneous, fragmented, and private nature of healthcare data, we in the 
oncology field may never achieve a level of data robustness enjoyed by other technology 
sectors. Therefore, strategies are necessary to mitigate the data problem, such as proper 
algorithm selection, model architecture improvements, data preprocessing, and data 
augmentation techniques. Above all, thoughtful selection of narrow use cases across 
cancer care touchpoints is paramount in order to yield clinical impact.

Once rigorously tested, these narrow-AIs could then be aggregated over the course of a 
patient’s care to provide a measurable, clinical benefit. This sort of AI-driven dimensionality 
reduction of a patient’s feature space allows for optimizing the development process 
and exporting of quality AI applications in the present environment of siloed data, 
expertise, and infrastructure. As of writing, there are approximately 20 FDA-approved 
AI applications targeted specifically for clinical oncology, and each of these performs 
a narrow task, utilizing a single data stream at a specific cancer care touchpoint29,39,40 
(Table 1). We hypothesize that the future of AI in oncology will continue to consist of 
an aggregation of rigorously evaluated, narrow-task models, each one providing small, 
incremental benefits for patient quantity and quality of life. In the next sections, we will 
review select AI applications that have excelled with this narrow-task approach.
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Narrow-Task AI Examples Across the Clinical Oncology Touchpoints

T1. Risk Prediction and Prevention. Given the burden to people and healthcare systems 
of cancer diagnosis and management, there is a significant opportunity for AI to help 
predict an individual’s risk of developing cancer, and thereby target screening and early 
interventions effectively and efficiently. In a mathematical sense, the patient’s entire 
personal history up until diagnosis makes up a vast and extremely heterogeneous 
datastream to be evaluated, positioning deep learning to have an impact. This is 
evidenced by the steady development of tools that leverage computational modeling to 
refine cancer risk. In the past few years, several DL algorithms have been investigated to 
further tailor risk prediction beyond traditional models. Some of these algorithms utilize 
novel datastreams that were not available until recently: satellite imagery41, internet 
search history42, and wearable devices43. Others maximize the utility of pre-existing 
datastreams, including patient genomics, routine imaging, unstructured health record 
data, and deeper family history to improve predictions44. 

T2. Screening. Cancer screening involves the input and evaluation of data at a distinct 
time-point to determine whether or not additional diagnostic testing and procedures 
are warranted. Datastreams can be in the form of serum markers, medical imaging, 
or visual or endoscopic examination. Each of these modalities provides opportunities 
for the integration of AI to improve prediction of cancer. For serum markers, such as 
prostate specific antigen (PSA), early research suggests that machine learning algorithms 
modeling PSA at different timepoints, in conjunction with other serum markers, may 
be able to better predict the presence of prostate cancer than PSA alone45. Perhaps 
more than in any other application, AI has found high impact use in medical imaging 
screening. Narrow-task models have been developed to localize lesions and predict 
risk of malignancy on lung cancer CT46 and breast cancer mammography47, with 
applications that have been shown to perform on par, or sometimes better than expert 
diagnosticians48. In these applications, raw pixel data of the image is utilized as input 
into a deep learning convolutional neural network that is trained based on radiologist-
labelled ground-truth outputs. Importantly, while the algorithms demonstrate impressive 
results in terms of area under the curve, sensitivity and specificity, they do not evaluate 
direct clinical endpoints, such as cancer mortality, healthcare costs, or quality of life. 
Outside of medical imaging, AI has found utility in screening endoscopy for colorectal 
carcinoma, with an application that guides biopsy site selection49,50. Furthermore, 
there are opportunities to improve diagnostic yield for other malignancies for which 
screening has been traditionally difficult and unproven. This could be accomplished 
by AI improving analysis of pre-existing datastreams, such as abdominal CT or MRI 
imaging, or via its ability to integrate multi-modal datastreams, like EHR and genomic 
data. While currently the United States Preventive Services Task Force (USPSTF) 
recommends against screening for many cancers51, there are a number of ongoing 
investigations to determine if incorporation of AI into screening criteria and technology 
may allow screening to be utilized in a wider array of disease sites, such as pancreatic 
cancer. 
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T3. Diagnosis. Diagnosing involves the exclusion of other benign disease processes 
and the characterization of cancer by primary site, histopathology, and increasingly, 
genomic classification. Diagnosis represents an AI touchpoint for these three domains 
by analyzing their respective datastreams: including clinical exam and medical imaging 
(i.e. Radiomics), digital pathology, and genomic sequencing. A key study that revealed 
the promise of deep learning for cancer diagnosis showed that convolutional neural 
networks could achieve dermatologist level accuracy in the classification of skin cancers 
utilizing digital photographs15. Other promising areas of investigation in this realm 
include non-invasive brain tumor diagnosis52 and prostate cancer Gleason grading53 via 
MRI, automated histopathologic diagnosis for breast cancer54 and prostate cancer55 , 
and utilization of radiographic and histopathologic data to predict underlying genomic 
classification56. Thus far, the Screening and Diagnosis touchpoints account for nearly all 
FDA-approved AI applications for clinical oncology, with three algorithms focusing on 
mammography and three focusing on CT-based lesion diagnosis39 .

T4. Risk Stratification and Prognosis. Historically, risk-stratification consisted of TNM 
staging, though increasingly additional datastreams such as genomics, advanced 
imaging, and serum markers have allowed for more precise risk stratification. Given 
the vast heterogeneity in cancer risk, risk-stratification presents a highly attractive use 
case for AI. Over the past two decades, genomic classifiers, developed with machine 
learning, have been integrated into risk-stratification for a number of malignancies. 
Classifiers such as OncotypeDx for breast cancer, a logistic regression based classifier, 
and the Decipher score, a random forest-based classifier, have demonstrated the ability 
to improve prognostication57 and guide treatment58. The Decipher score genomic 
classifier is based on 22 genomic expression markers input into a random forest model 
that was trained to predict metastasis after prostatectomy for patients with prostate 
cancer at a single institution26. This classifier has been subsequently validated in several 
external settings, and is now undergoing investigation in several randomized control 
trials (NCT04513717; NCT02783950). Deep learning strategies have been explored to 
integrate multi-omic data sources into risk-stratification models utilizing combinations 
of diagnostic imaging59, EHR data43,60, and genomic information61. Furthermore, there 
is the potential for deep learning to better risk-stratify patients based on large population 
databases, such as the Surveillance, Epidemiology, and End Results Program, by learning 
non-linear relationships between database variables, though preliminary efforts require 
validation62.

T5. Initial Treatment Strategy. The formulation of initial treatment strategy is arguably 
the most pivotal touchpoint for AI in the cancer pathway, as it directly influences patient 
management. The last two decades have seen exponential growth in the number and 
complexity of initial treatment options for common cancers3. A common predicament 
for initial treatment is what combination of systemic therapy, radiotherapy, and surgery is 
optimal for a given patient. Machine learning methods utilizing genomic63 and radiomic 
data64 have been investigated to predict radiation sensitivity. While immunotherapy has 
been adopted in an increasing number of disease settings, it remains difficult to predict 
response based on currently available biomarkers, and machine learning algorithms 
with radiomic input have demonstrated the ability to improve response prediction65. 
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Furthermore, deep learning has demonstrated the ability to analyze multi-modal 
datastreams within the genomic realm: a recent analysis demonstrated that integration 
of tumor mutational burden, copy number alteration, and microsatellite instability 
code can help predict response to immunotherapy66. AI is also enabling more accurate 
“evidence-based treatment”. Natural language processing and powerful language models 
can help analyze published scientific works and utilize existing oncology literature 
e.g. extracting medical oncology concepts from EHR and linking these to a literature 
corpus67.

T6. Response Assessment. Assessment of response to treatment generally includes 
radiographic and clinical assessments. Quantitative response assessment criterias 
like RECIST and RANO have long been established as reproducible ways to assess 
response to therapy, though in the age of targeted immunotherapies, validity has been 
questioned68. As targeted therapeutics and immunotherapies have entered the clinic, 
however, it has become clear that response assessment via RECIST is inadequate, due 
to phenomena such as pseudoprogression69. Detailed response assessment is often a 
time intensive process that requires a high degree of human expertise and experience, 
not to mention high intra- and inter-reader variability. Additionally, despite periodic 
review and revision of these criteria, they remain inapt at capturing edge cases, such as 
variable lesion response, in the case of patients receiving immunotherapy. Deep learning 
has demonstrated potential for automated response assessment, including automated 
RANO assessment70 and RECIST response in patients undergoing immunotherapy 71. 

T7. Subsequent Treatment Strategy. When approaching AI algorithm development for 
subsequent treatment strategy, there are a number of specific considerations that generate 
complexity as compared to from initial treatment strategy. Firstly, there are additional 
datastreams to consider, such as prior treatments, treatment-related toxicity, restaging 
imaging, and often multiple tissue specimens. Given the heterogeneity in datastreams 
and the shrinking patient populations from which to build these models, subsequent 
treatment strategy is a challenging space for evidence-based decision-making, and in turn, 
for reliable AI applications. Algorithms that utilize longitudinal follow-up information 
may help here. In one example, AI has demonstrated the ability to synthesize serial CT 
follow-up imaging for lung cancer patients post-chemoradiation, and demonstrated the 
ability to predict later recurrence72. An intervention such as this could guide selection 
for patients to undergo consolidative treatments like surgery or immunotherapy.

T8. Follow-up. Another underexplored area for AI oncologic applications is development 
of tools to guide precision follow-up. Diagnostic and screening algorithms may often be 
transferable to the follow-up setting, but will require retraining and validation for the 
task of interest. Similar to T7, the effect of prior cancer treatment on the datastream 
will often shift things significantly. For example, radiomic features extracted from the 
same tumor, pre- and post-treatment, show significant discrepancies73. These “delta” 
features could be used to predict patient recurrence risk and late toxicity, helping to 
tailor follow-up plans74. Appropriately triaging patients for escalated follow-up and 
attention can promote decreased morbidity and more efficient healthcare resource 
utilization; AI leveraging EHR data has demonstrated the ability to accomplish this, by 
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selecting patients at high risk for acute care visit while undergoing cancer therapy and 
assigning them to an escalated preventative care strategy75. In cases where patients have 
untreatable relapse, end-of-life care becomes an extremely important and challenging 
process. AI has shown potential here as well, as a way to triage patients at high risk of 
mortality and nudge physicians to converse with patients regarding their values, wishes, 
and quality of life options76.

Challenges for Clinical Translation: Beyond Performance Validation

While tremendous strides have been made in the development of oncologic AI, as 
evidenced by the surge in publications and published datasets in recent years, there 
remains a large gap between evidence for AI performance and evidence for clinical 
impact. While there have been thousands of published studies of deep learning algorithm 
performance77, a recent systematic review, found only nine prospective trials, and two 
published randomized clinical trials of deep learning in medical imaging7.

As alluded to above, perhaps the defining barrier to development of clinical AI 
applications in oncology, and healthcare overall, is data limitation, both in quality and 
quantity. The problems with data curation, aggregation, transparency, bias, and reliability 
have been well-described78,79. Additionally, the lack of AI model interpretability, trust, 
reproducibility, and generalizability have received ample, and well-justified attention80. 
While all of these challenges must be overcome for successful AI development, here 
we will introduce several concepts specific to clinical translation of models that have 
already succeeded in preliminary stages of development and validation: clinical validity, 
utility, and usability (Figure 3). Incorporation of these concepts into model design and 
evaluation is easy to overlook, yet is critical to move clinical AI beyond the research and 
development stage into real-world cancer care.
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 Figure 3:  Bridging the AI translational gap between  initial model development and routine 
 clinical cancer care by emphasizing and demonstrating three essential concepts: clinical validity, 
 utility, and usability. 

 To demonstrate  clinical validity  , a model is often  evaluated in the following general 
 sequence: internal validation, external validation, prospective testing, and local testing in the 
 real-world population of interest  81  . Recently developed  guidelines such as FAIR data, 
 CONSORT/SPIRTAI, and the (in development) TRIPOD-AI checklists should be followed to 
 ensure reproducibility, transparency, and methodologic rigor  82  . These guidelines are an 
 important step forward in standardizing AI model development pathways and establishing a 
 basis to determine AI study methodological rigor. While the vast majority of AI published reports 
 include an internal, blinded test set, far fewer utilize an external validation set, and an even 
 smaller proportion employ prospective testing and benchmark comparisons with human 
 experts  83  . Given the lack of hypothesize-driven feature  selection in most AI models, 
 performance in real-world scenarios can vary dramatically if the test data distribution varies from 
 the training data  84  . For this reason, multiple external  validation sets are of utmost importance. 
 Beyond this, it is often difficult to predict how a model will perform on edge cases - those that 
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Figure 3. Bridging the AI translational gap between initial model development and routine clinical cancer care by 
emphasizing and demonstrating three essential concepts: clinical validity, utility, and usability. 

To demonstrate clinical validity, a model is often evaluated in the following general 
sequence: internal validation, external validation, prospective testing, and local testing 
in the real-world population of interest81. Recently developed guidelines such as FAIR 
data, CONSORT/SPIRTAI, and the (in development) TRIPOD-AI checklists should 
be followed to ensure reproducibility, transparency, and methodologic rigor82. These 
guidelines are an important step forward in standardizing AI model development 
pathways and establishing a basis to determine AI study methodological rigor. While the 
vast majority of AI published reports include an internal, blinded test set, far fewer utilize 
an external validation set, and an even smaller proportion employ prospective testing 
and benchmark comparisons with human experts83. Given the lack of hypothesize-
driven feature selection in most AI models, performance in real-world scenarios can vary 
dramatically if the test data distribution varies from the training data84. For this reason, 
multiple external validation sets are of utmost importance. Beyond this, it is often 
difficult to predict how a model will perform on edge cases - those that were under-
represented in training data85. In the practice of oncology, detection of rare findings 
can be critical to safe cancer care, and thus must be taken into account to demonstrate 
a model is clinically valid. One way to mitigate the risk of model failure in real-world 



Chapter 2

38

use, is to conduct trial, run-in periods of “silent” prospective testing in the scenario of 
interest86. If a model performs well in the run-in period, there is some assurance that 
it will be safe to utilize, though its performance on extremely rare cases may be still 
difficult to presume.

Demonstrating clinical utility, requires clinical validity as a prerequisite, but goes 
beyond performance validation to the testing of clinically meaningful endpoints. High 
performance on commonly used endpoints, such as area under the receiver operating 
characteristic curve, sensitivity, or specificity, may suffice for certain diagnostic 
applications, but real-world impact will require validation of clinical endpoints as 
appropriate for each touchpoint along the care pathway. In the case of oncology, this 
includes overall survival, disease control, toxicity reduction, quality of life improvement, 
and decrease of healthcare resource utilization. Testing of these endpoints should be 
ideally performed in the setting of a randomized trial. The gold standard would be 
randomizing patients to the AI intervention and directly comparing clinical endpoints. 
A few of these trials have been completed, with one notable example involving testing 
accuracy for polyp detection rate on colonoscopy87. In this study, the primary outcome 
was adenoma detection rate. Despite demonstrating the superiority of the AI systems, 
downstream clinical benefit in terms of quality of life or survival requires yet further 
investigation. Another approach to AI clinical trials is to apply a validated model to all 
patients for risk-stratification, and then to apply randomized interventions. This was 
pursued successfully in a trial that utilized EHR data to predict patients at high-risk 
for emergency department (ED) visits during radiotherapy75. High-risk patients were 
then randomized to usual care, or extra preventative provider visits. It was found that 
high-risk patients randomized to extra visits had significantly fewer ED and hospital 
admissions, while low-risk patients had uniformly low rates of ED and hospital 
admissions without extra care. While providing a lower level of clinical utility evidence 
than a true randomized trial, this type of study strategy is attractive and practical for 
AI-based risk-prediction models, which make up a large proportion of AI models in 
development. Randomized clinical trials are notoriously difficult and time-consuming 
to execute, and AI interventions have unique characteristics that make such undertakings 
even more daunting. Notably, AI models are able to adapt to new data and improve 
over time; how would one take this into account in a traditional randomized trial? 
While we need AI to embrace randomized trials to truly prove clinical utility, it may be 
time to recognize that a re-imagining of the traditional randomized clinical trial may be 
necessary to appropriately study the benefits of AI applications88.

Beyond validation of clinically meaningful endpoints, demonstrating clinical usability 
involves study of the AI model in a real-world setting, where it interfaces with 
clinical practitioners and patients. Evaluation of effects of the model on timed tasks, 
user satisfaction, and acceptance of AI recommendations should be performed89. A 
mechanism of feedback should be integrated into the design of the platform to identify 
weak points and opportunities for improved interface90. Additionally, interoperability 
between systems at the facility-to-facility, intra-facility, and point-of-care levels are 
crucial to streamline workflow91. Usability issues are also specific to the datastreams 
being analyzed. New datastreams such as mobile health data and wearable activity 
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monitors each present unique challenges to usability and adoption43. A key component 
of promoting usability is interpretability of the AI algorithm. As data streams become 
more dimensional, it is increasingly difficult to discern a biological or clinical rationale 
supporting an algorithm’s predictions. This “black-box” effect may be acceptable in 
certain consumer electronics industries, but due to the consequential and medicolegal 
nature of healthcare decision-making, lack of interpretability poses a tremendous barrier 
to clinical use92,93. Fortunately, there is a growing research field dedicated to investigation 
of interpretability issues, and several techniques, such as saliency maps, hidden-states 
analysis, variable importance metrics, and feature visualizations can illuminate some 
aspects of AI prediction rationale94,95. Beyond this, an appreciation of advances in 
Human Factors research and collaboration with appropriate experts can help streamline 
the adoption of otherwise clinically validated algorithms. Finally, translating algorithms 
into clinical usable solutions requires robust information technology support services 
that may require dedicated investment from clinical institutions and departments.

Another key concept related to clinical usability is addressing the challenges that 
emerge when multiple AI models are deployed sequentially or simultaneously at a given 
touchpoint or series of touchpoints. Orchestration of these situations, which are expected 
to become more common, require attention to end-user responsibilities, interoperability, 
access, and training. As a patient moves through the oncology care path, they interact 
(directly or indirectly) with many different care providers who may be the primary users 
of a given AI application (Figure 2). These users may have a primarily diagnostic or 
therapeutic role (or both). From a simplified perspective, the primary diagnosticians of 
the cancer care path are pathologists and radiologists, while the therapeutic clinicians 
tend to be medical, radiation, and surgical oncologists. Multidisciplinary touchpoints 
along the pathway, e.g. tumor boards, represent opportunities to collate and orchestrate 
disparate AI applications. In addition to physicians, there are numerous advanced 
practice providers such as nurses and physician assistants, as well as therapists, social 
workers, and medical students, who may be users of a specific AI application. If, for 
example, a patient receives a CT scan with an AI-generated prediction of malignancy, 
and this prediction is subsequently utilized as input for another algorithm to recommend 
surgery as treatment, who is the “designated user” primarily responsible for utilizing and 
disseminating that information? A further issue, which logically follows, is who is legally 
liable for decisions based on the use of the model. Specific solutions have not yet been 
developed to address these issues, and are, unfortunately, likely to arise on an ad hoc, 
case by case basis. This clinical orchestration of AI models merits further resources, 
investigation, and guidelines aimed at medical AI developers and cancer care providers 
to navigate these complex issues.

Despite the vanishingly few FDA-approved AI applications for oncologic indications, 
with numerous applications in the pipeline, there is high interest in streamlining ways 
to bridge the gap between development and clinical translation. Accordingly, the FDA 
is in the process of devising AI and machine learning-specific guidelines for approved 
clinical use. The recently released action plan incorporates the above clinical concepts 
and sets the stage for further defining a framework for safe AI translation to the clinic96. 
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Conclusions

Increasing datastreams and advances in computational algorithms have positioned 
artificial intelligence to improve clinical oncology via rigorously evaluated, narrow-task 
applications interacting at specific touchpoints along the cancer care path. While there 
are a number of promising artificial intelligence applications for clinical oncology in 
development, substantial challenges remain to bridge the gap to clinical translation. 
The most successful models have leveraged large-scale, robustly annotated datasets 
for narrow tasks at specific cancer care touchpoints. Further development of artificial 
intelligence applications for cancer care should emphasize clinical validity, utility, and 
usability. Successful incorporation of these concepts will require bringing a patient-
provider, clinical decision-centric focus to model development and evaluation.
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Abstract

Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated 
remarkable progress in image-recognition tasks. Methods ranging from convolutional 
neural networks to variational autoencoders have found myriad applications in the 
medical image analysis field, propelling it forward at a rapid pace. Historically, in 
radiology practice, trained physicians visually assessed medical images for the detection, 
characterization and monitoring of diseases. AI methods excel at automatically recognizing 
complex patterns in imaging data and providing quantitative, rather than qualitative, 
assessments of radiographic characteristics. In this opinion article, we establish a general 
understanding of AI methods, particularly those pertaining to image-based tasks. We 
explore how these methods could impact multiple facets of radiology, with a general 
focus on applications in oncology, and demonstrate ways in which these methods are 
advancing the field. Finally, we discuss the challenges facing clinical implementation 
and provide our perspective on how the domain could be advanced.
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Introduction

Artificial Intelligence [G] (AI) has recently made substantial strides in perception, 
the interpretation of sensory information, allowing machines to better represent and 
interpret complex data. This has led to major advances in applications ranging from 
web search and self-driving vehicles to natural language processing and computer vision 
- tasks that up until a few years ago could only be done by humans1. Deep learning is 
a subset of machine learning [G] that is based on a neural network structure loosely 
inspired by the human brain. Such structures learn discriminative features from 
data automatically, giving them the ability to approximate very complex nonlinear 
relationships (Box 1). While most earlier AI methods have led to applications with sub-
human performance, recent deep learning algorithms are able to match and even surpass 
humans in task-specific applications2–5 (Figure 1). This owes to recent advances in AI 
research, the massive amounts of digital data now available to train algorithms, as well 
as modern powerful computational hardware. Deep learning methods have been able 
to defeat humans in the strategy board game of Go, an achievement that was previously 
thought to be decades away given the highly complex game space and massive number 
of potential moves6. Following the trend towards a human-level general AI, researchers 
predict that AI will automate many tasks including translating languages, writing best-
selling books, and performing surgery - all within the coming decades7. 
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Figure 1. Artificial versus human intelligence. This plot outlines the performance levels of artificial intelligence (AI) 
and human intelligence starting from the early computer age and extrapolating into the future. Early AI came with a 
subhuman performance and varying degrees of success. Currently, we are witnessing narrow task-specific AI applications 
that are able to match and occasionally surpass human intelligence. It is expected that general AI will surpass human 
performance in specific applications within the coming years. Humans will potentially benefit from the human-AI 
interaction, bringing them to higher levels of intelligence.
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Within healthcare, AI is becoming a major constituent of many applications including 
drug discovery, remote patient monitoring, medical diagnostics and imaging, risk 
management, wearables [G], virtual assistants, and hospital management. Many domains 
with big data components such as the analysis of DNA and RNA sequencing data8 are 
also expected to benefit from the use of AI. Medical fields that rely on imaging data, 
including radiology, pathology, dermatology9, and ophthalmology10, have already begun 
to benefit from the implementation of AI methods (Box 2). Within radiology, trained 
physicians visually assess medical images and report findings to detect, characterize, and 
monitor diseases. Such assessment is often based on education and experience and can 
be, at times, subjective. In contrast to such qualitative reasoning, AI excels at recognizing 
complex patterns in imaging data and can provide a quantitative assessment in an 
automated fashion. More accurate and reproducible radiology assessments can then be 
made when AI is integrated into the clinical workflow as a tool to assist physicians. 

Machine learning algorithms based on predefined engineered features
Traditional artificial intelligence (AI) methods rely, largely, on predefined engineered feature 
algorithms (Figure 2A) with explicit parameters based on expert knowledge. Such features 
are designed to quantify specific radiographic characteristics, such as the 3D shape of a tumor 
or the intratumoral texture and distribution of pixel intensities (histogram). A subsequent 
selection step ensures that only the most relevant features are used. Statistical machine learning 
models are then fit to this data to identify potential imaging-based biomarkers. Examples of 
these models include support vector machines and random forests.

Deep learning algorithms
Recent advances in AI research have given rise to new non-deterministic deep learning 
algorithms that do not require explicit feature definition, representing a fundamentally different 
paradigm in machine learning11–13. The underlying methods of deep learning have existed for 
decades. However, only in recent years, sufficient data and computational power have become 
available. Without explicit feature predefinition or selection, these algorithms learn directly 
by navigating the data space giving them superior problem-solving capabilities. While various 
deep learning architectures have been explored to address different tasks, convolutional 
neural networks (CNN) are the most prevalent deep learning architecture typologies in 
medical imaging today14. A typical CNN comprises a series of layers that successively map 
image inputs to desired endpoints, while learning increasingly higher level imaging features 
(Figure 2B). Starting from an input image, ‘hidden layers’ within CNNs usually include a 
series of convolution and pooling operations extracting feature maps and performing feature 
aggregation respectively. These hidden layers are then followed by fully connected layers 
providing high level reasoning before an output layer produces predictions. CNNs are often 
trained end-to-end with labelled data for supervised learning. Other architectures, such as 
deep autoencoders15 and generative adversarial networks16, are more suited to unsupervised 
learning tasks on unlabeled data. Transfer learning, or using pre-trained networks on other 
datasets, is often utilized when dealing with scarce data17.

Box 1: Artificial Intelligence methods in Medical Imaging
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As imaging data are collected during routine clinical practice, large datasets are - in 
principle - readily available, thus offering an incredibly rich resource for scientific 
and medical discovery. Radiographic images, coupled with data on clinical outcomes, 
has led to the emergence and rapid expansion of radiomics [G] as a field of medical 
research18–20. Early radiomics studies were largely focused on mining images for a large 
set of predefined engineered features [G] that describe radiographic aspects of shape, 
intensity, and texture. More recently, radiomics studies have incorporated deep learning 
techniques to learn feature representations automatically from example images14 hinting 
at the significant clinical relevance of many of these radiographic features. Within 
oncology, multiple efforts have successfully explored radiomics tools for assisting clinical 
decision making related to the diagnosis and risk stratification of different cancers21,22. 
For example, studies in non-small-cell lung cancer (NSCLC) used radiomics to predict 
distant metastasis in lung adenocarcinoma23, tumor histological subtypes24, as well as 
disease recurrence25, somatic mutations26, gene-expression profiles27, and overall survival 
rates28. Such findings have motivated exploring the clinical utility of AI-generated 
biomarkers based on standard-of-care radiographic images29 - with the ultimate hope of 
better supporting radiologists in disease diagnosis, imaging quality optimization, data 
visualization, response assessment, and report generation [G]. 

In this opinion article, we start by establishing a general understanding of AI methods 
particularly pertaining to image-based tasks. We then explore how up-and-coming AI 
methods will impact multiple radiograph-based practices within oncology. Finally, we 
discuss the challenges and hurdles facing the clinical implementation of these methods.

AI in Medical Imaging

The primary driver behind the emergence of AI in medical imaging has been the desire 
for greater efficacy and efficiency in clinical care. Radiological imaging data continues 
to grow at a disproportionate rate when compared with the number of available trained 
readers, and the decline in imaging reimbursements has forced healthcare providers to 
compensate by increasing productivity30. These factors have contributed to a dramatic 
increase in radiologists’ workload. Studies report that, in some cases, an average 
radiologist must interpret one image every 3-4 seconds in an 8-hour workday to meet 
workload demands31. As radiology involves visual perception as well as decision-making 
under uncertainty32, errors are inevitable - especially under such constrained conditions. 
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Thoracic Imaging. Lung cancer is one of the most common and deadly of 
tumors. Lung cancer screening can help identify pulmonary nodules, with early 
detection being lifesaving in many cases. AI can help to automatically identify 
these nodules and also assist in categorizing them as benign or malignant.

Abdominal and Pelvic Imaging. With the rapid growth in medical imaging, 
especially computed tomography (CT) and magnetic resonance imaging 
(MRI), more incidental findings including liver lesions are identified. AI may 
aid in characterizing these lesions as benign or malignant and prioritizing 
follow up evaluation for these patients.

Colonoscopy. Colonic polyps that are undetected or misclassified pose a 
potential risk for colorectal cancer. While most polyps are initially benign, 
they can become malignant over time33. Hence, early detection and consistent 
monitoring with robust AI-based tools is critical. 

Mammography. Screening mammography is technically challenging to 
expertly interpret. AI can assist in the interpretation, in part by identifying 
and characterizing microcalcifications (small deposits of calcium in the breast).

Brain Imaging. Brain tumors are characterized by abnormal growth of tissue 
and can either be benign, malignant, primary or metastatic34.

Radiation Oncology. Radiation treatment planning can be automated by 
segmenting tumors for radiation dose optimization. Furthermore, assessing 
response to treatment by monitoring over time is essential to evaluate the 
success of radiation therapy efforts. AI is able to perform these assessments, 
thereby improving accuracy and speed.
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Dermatology. Diagnosing skin cancer requires trained dermatologists to 
visually inspect suspicious areas. With the large variability in sizes, shades and 
textures, skin lesions are rather challenging to interpret9. The massive learning 
capacity of deep learning algorithms qualifies them to handle such variance and 
detect characteristics well beyond those considered by humans.

Pathology. The quantification of digital whole slide images of biopsies is vital 
in the accurate diagnosis of many types of cancers. With the large variation in 
imaging hardware, slide preparation, magnification and staining techniques, 
traditional AI methods often require considerable tuning to address this 
problem. More robust AI is able to more accurately perform mitosis detection, 
segment histologic primitives (such as nuclei, tubules and epithelium), count 
events as well as characterize and classify tissue35–38.

DNA and RNA sequencing. The ever increasing amounts of available 
sequencing data continues to provide opportunities for utilizing genomic 
endpoints in cancer diagnosis and care. AI-based tools are able to identify 
and extract high level features correlating somatic point mutations and cancer 
types39 as well as predict the effect of mutations on sequence specificities of 
RNA- and DNA-binding proteins40.

Box 2. Examples of Clinical Application Areas of Artificial Intelligence in Oncology
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A seamlessly integrated AI component within the imaging workflow would increase 
efficiency, reduce errors, and achieve objectives with minimal manual input by providing 
trained radiologists with pre-screened images and identified features. Therefore, 
substantial efforts and policies are being put forward to facilitate technological advances 
related to AI in medical imaging. Almost all image-based radiology tasks are contingent 
upon the quantification and assessment of radiographic characteristics from images. 
These characteristics can be important for the clinical task at hand, that is, for the 
detection, characterization, or monitoring of diseases. The application of logic and 
statistical pattern recognition to problems in medicine have long been proposed since 
the early 1960s41,42. As computers became more prevalent in the 1980s, the AI-powered 
automation of many clinical tasks has shifted radiology from a perceptual subjective craft 
to a quantitatively computable domain43,44. The rate at which AI is evolving radiology is 
parallel to that in other application areas and is proportional to the rapid growth of data 
and computational power. 

 Figure 2:  Artificial intelligence methods in medical  imaging. This schematic outlines two artificial 
 intelligence (AI) methods for a representative classification task, such as the diagnosis of a 
 suspicious object as either benign or malignant. A. The first method relies on engineered 
 features extracted from regions of interest on the basis of expert knowledge. Examples of these 
 features in cancer characterization include tumour volume, shape, texture, intensity and 
 location. The most robust features are selected and fed into machine learning classifiers. B. The 
 second method uses deep learning and does not require region annotation — rather, 
 localization is usually sufficient. It comprises several layers where feature extraction, selection 
 and ultimate classification are performed simultaneously during training. As layers learn 
 increasingly higher-level features  (Box 1)  , earlier  layers might learn abstract shapes such as 
 lines and shadows, while other deeper layers might learn entire organs or objects. Both 
 methods fall under radiomics, the data-centric, radiology-based research field. 

 There are two classes of AI methods that are in wide use today  (Box 1  ,  Figure 2)  . The 
 first uses handcrafted engineered features that are defined in terms of mathematical equations 
 (such as tumor texture) and can thus be quantified using computer programs  45  . These features 
 are used as input to state-of-the-art machine learning models that are trained to classify patients 
 in ways that can support clinical decision making. While such features are  perceived to be 
 discriminative, they rely on expert definition and hence do not necessarily represent the most 
 optimal feature quantification approach for the discrimination task at hand.  Moreover, predefined 
 features are often unable to adapt to variations in imaging modalities, such as computed 
 tomography (CT), positron emission tomography (PET), and magnetic resonance imaging 
 (MRI)  ,  and their associated signal to noise characteristics. 
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Figure 2. Artificial intelligence methods in medical imaging. This schematic outlines two artificial intelligence (AI) 
methods for a representative classification task, such as the diagnosis of a suspicious object as either benign or malignant. 
A. The first method relies on engineered features extracted from regions of interest on the basis of expert knowledge. 
Examples of these features in cancer characterization include tumour volume, shape, texture, intensity and location. The 
most robust features are selected and fed into machine learning classifiers. B. The second method uses deep learning and 
does not require region annotation — rather, localization is usually sufficient. It comprises several layers where feature 
extraction, selection and ultimate classification are performed simultaneously during training. As layers learn increasingly 
higher-level features (Box 1), earlier layers might learn abstract shapes such as lines and shadows, while other deeper 
layers might learn entire organs or objects. Both methods fall under radiomics, the data-centric, radiology-based research 
field.
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There are two classes of AI methods that are in wide use today (Box 1, Figure 2). The 
first uses handcrafted engineered features that are defined in terms of mathematical 
equations (such as tumor texture) and can thus be quantified using computer programs45. 
These features are used as input to state-of-the-art machine learning models that are 
trained to classify patients in ways that can support clinical decision making. While 
such features are perceived to be discriminative, they rely on expert definition and hence 
do not necessarily represent the most optimal feature quantification approach for the 
discrimination task at hand. Moreover, predefined features are often unable to adapt to 
variations in imaging modalities, such as computed tomography (CT), positron emission 
tomography (PET), and magnetic resonance imaging (MRI), and their associated signal 
to noise characteristics.

The second method, deep learning, has gained considerable attention in recent years. 
Deep learning algorithms can automatically learn feature representations from data 
without the need for prior definition by human experts. This data driven approach allows 
for more abstract feature definitions making it more informative and generalizable. Deep 
learning can thus automatically quantify phenotypic characteristics of human tissues46, 
promising substantial improvements in diagnosis and clinical care. Deep learning has 
the added benefit of reducing the need for manual preprocessing steps. For example, to 
extract predefined features, accurate segmentation [G] of diseased tissues by experts is 
often needed47. Because deep learning is data driven (Box 1), with enough example data 
it can automatically identify diseased tissues and hence avoid the need for expert defined 
segmentations. Given its ability to learn complex data representations, deep learning is 
also often robust against unwanted variation such as inter-reader variability, and can 
hence be applied to a large variety of clinical conditions and parameters. In many ways, 
deep learning can mirror what trained radiologists do, that is, identify image parameters, 
but also weigh up the importance of these parameters based on other factors to arrive at 
a clinical decision. 

Given the growing number of applications of deep learning in medical imaging14, 
several efforts have compared deep learning methods with their predefined feature-
based counterparts, and have reported substantial performance improvements with deep 
learning48,49. Studies have also shown that deep learning technologies are on par with 
radiologists’ performance for both detection50 and segmentation51 tasks in ultrasound 
and MRI respectively. For the classification tasks of lymph node metastasis in PET–CT, 
deep learning had higher sensitivities but lower specificities than radiologists52. As these 
methods are iteratively refined and tailored for specific applications, a better command 
of the sensitivity:specificity trade-off is expected. Deep learning can also enable faster 
development times as it depends solely on curated data and its corresponding metadata 
rather than domain expertise. On the other hand, traditional predefined feature systems 
have shown plateauing performance over recent years and hence do not generally meet 
the stringent requirements for clinical utility. As a result, only a few have been translated 
into the clinic53. It is expected that high performance deep learning methods will surpass 
the threshold for clinical utility within the near future, and can therefore be expeditiously 
translated into the clinic.
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Impact on Oncology Imaging 

In this section, we focus on three main clinical radiology tasks that specifically pertain 
to oncology: abnormality detection followed by characterization and subsequent 
monitoring of change (Figure 3). These tasks require a diversified set of skills: medical, 
in terms of disease diagnosis and care, as well as technical for capturing and processing 
radiographic images. Both these skills hint at the ample opportunities where up and 
coming AI technologies can positively impact clinical outcomes by identifying phenotypic 
characteristics in images. In addition to performing these tasks on radiographic cancer 
images, such as in thoracic imaging and mammography, they are also common to other 
oncology subspecialties where non-radiographic images are used (Box 2). For each of 
these tasks, we investigate technologies currently being utilized in the clinic and provide 
highlights of research efforts aimed at integrating state-of-the-art AI developments in 
these practices.

Detection 

Within the manual detection workflow, radiologists rely on manual perceptive skills to 
identify possible abnormalities, followed by cognitive skills to either confirm or reject the 
findings. Radiologists visually scan through stacks of images while periodically adjusting 
viewing planes and window width and level settings. Relying on education, experience 
and an understanding of the healthy radiograph, radiologists are trained to identify 
abnormalities based on changes in imaging intensities or the appearance of unusual 
patterns. These criteria, and many more, fall within a somewhat subjective decision 
matrix that enables reasoning in problems ranging from detecting lung nodules to 
breast lesions and colon polyps. As dependence on computers has increased, automated 
methods for the identification and processing of these predefined features - collectively 
known as computer aided detection (CADe) - have long been proposed and occasionally 
utilized in the clinic45. Radiologist-defined criteria are distilled into a pattern recognition 
problem where computer vision algorithms highlight conspicuous objects within the 
image54. However, these algorithms are often task-specific and do not generalize across 
diseases and imaging modalities. Additionally, the accuracy of traditional predefined 
feature-based CADe systems remains questionable with ongoing efforts to reduce false 
positives. It is often the case that outputs have to be assessed by radiologists to decide 
if a certain automated annotation merits further investigation, thereby making it labor 
intensive. In examining mammograms, some studies have reported that radiologists 
rarely altered their diagnostic decisions after viewing results and that predefined feature-
based CADe integration had no statistical significance on the radiologist’s performance 
within a clinical setting55,56. This is owing, in part, to the sub-human performance 
of these systems. Recent efforts have explored deep learning-based CADe to detect 
pulmonary nodules in CT57 and prostate cancer in multiparametric imaging [G], 
specifically multiparametric MRI58. In detecting lesions in mammograms, early results 
show that utilizing convolutional neural networks (Deep learning algorithms; Box 1) 
in CADe outperforms traditional CADe systems at low sensitivity while performing 
comparably at high sensitivity, and shows similar performance compared to human 
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readers59. These findings hint at the utility of deep learning in developing robust high-
performance CADe systems.

Characterization 

Characterization is an umbrella term referring to the segmentation, diagnosis, 
and staging of a disease. These tasks are accomplished by quantifying radiological 
characteristics of an abnormality, such as the size, extent, as well as internal texture. 
While handling routine tasks of examining medical images, humans are simply not 
capable of accounting for more than a handful of qualitative features. This is exacerbated 
by the inevitable variability across human readers, with some performing better than 
others. Automation through AI can, in principle, consider a large number of quantitative 
features together with their degrees of relevance - while performing the task at hand in 
a reproducible manner every time. For instance, it is difficult for humans to accurately 
predict the status of malignancy in the lung due to the similarity between benign and 
malignant nodules in CT scans. AI can automatically identify these features, and many 
others, while treating them as imaging biomarkers. Such biomarkers could hence be 
used to predict malignancy likelihood amongst other clinical endpoints including risk 
assessment, differential diagnosis, prognosis, and response to treatment.

Within the initial segmentation step, whilst non-diseased organs can be segmented with 
relative ease, identifying the extent of diseased tissue is potentially orders of magnitude 
more challenging. Typical practices of tumor segmentation within clinical radiology 
today are often limited to high-level metrics such as the largest in-plane diameter. 
However, in other clinical cases, a higher specificity and precision are vital. For instance, 
in clinical radiation oncology, the extents of both tumor and non-tumor tissues have 
to be accurately segmented for radiation treatment planning. Attempts at automating 
segmentation have made their way into the clinic, with varying degrees of success60. 
Segmentation finds its roots in earlier computer vision research carried out in the 1980s61 
with continued refinement over the past decades. Simpler segmentation algorithms 
used clustered imaging intensities to isolate different areas, or utilized region growing 
where regions are expanded around user-defined seed points within objects until a 
certain homogeneity criterion is no longer met62. A second generation of algorithms 
saw the incorporation of statistical learning and optimization methods to improve 
segmentation precision, such as the watershed algorithm where images are transformed 
into topological maps with intensities representing heights63. More advanced systems 
incorporate prior knowledge into the solution space, as in the use of a probabilistic 
atlas [G] - often an attractive option when objects are ill-defined in terms of their pixel 
intensities. Such atlases have enabled more accurate automated segmentations as they 
contain information regarding the expected locations of tumors across entire patient 
populations60. Applications of probabilistic atlases include segmenting brain MRI for 
locating diffuse low-grade glioma64, prostate MRI for volume estimation65 and head and 
neck CT for radiotherapy treatment planning66, to name a few. 
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Recently proposed deep learning architectures for segmentation include fully 
convolutional networks, networks comprised of convolutional layers only, that output 
segmentation probability maps across entire images67. Other architectures, such as the 
U-net68, have been specifically designed for medical images. Studies have reported that a 
single deep learning system is able to perform diverse segmentation tasks across multiple 
modalities and tissue types: brain MRI, breast MRI and cardiac CT angiography (CTA), 
without task-specific training69. Others describe deep learning methods for brain MRI 
segmentation that completely eliminate the need for image registration, a required 
preprocessing step in atlas-based methods70.

Multiple radiographic characteristics are also employed in subsequent diagnosis tasks. 
These are critical to identify, for instance, if a lung nodule is solid or if it contains non-
solid areas, also known as ground-glass opacity [G] (GGO) nodules. GGOs are rather 
challenging to diagnose and often require special management protocols, mainly due 
to the lack of associated characteristics of malignancy or invasiveness in radiographs71. 
Generally, tumor radiographic characteristics may include information regarding size, 
maximum diameter, sphericity, internal texture, and margin definition. The logic for 
diagnosis is based on these, often subjective, characteristics enabling the stratification 
of objects into classes indicative of being benign or malignant. Methods to automate 
diagnoses are collectively referred to as computer aided diagnosis (CADx) systems. 
Similar to CADe, they often rely on predefined engineered discriminative features. 
Several systems are already in clinical use, as is the case with screening mammograms72. 
They usually serve as a second opinion in complementing a radiologist’s assessment73 
and their perceived successes have led to the development of similar systems for other 
imaging modalities including ultrasound and MRI74. For instance, traditional CADx 
systems have been used on ultrasound images to diagnose cervical cancer in lymph nodes, 
where they have been found to improve the performance of particularly inexperienced 
radiologists as well as reduce variability amongst them75. Other application areas include 
prostate cancer in multiparametric MRI where a malignancy probability map is first 
calculated for the entire prostate, followed by automated segmentation for candidate 
detection76.

The accuracy of traditional predefined feature-based CADx systems is contingent upon 
several factors, including the accuracy of prior object segmentations. It is often the case 
that errors are magnified as they propagate through the various image-based tasks within 
the clinical oncology workflow. We also find that some traditional CADx methods fail 
to generalize across different objects. For instance, while the measurement of growth 
rates over time is considered as a major factor in assessing risk, pulmonary nodule CADx 
systems designed around this criterion are often unable to accurately diagnose special 
nodules such as cavity and GGO nodules77. Such nodules require further descriptors 
for accurate detection and diagnosis - descriptors that are not discriminative when 
applied to the more common solid nodules78. This eventually leads to multiple solutions 
that are tailored for specific conditions with limited generalizability. Without explicit 
predefinition of these discriminative features, deep learning-based CADx is able to 
automatically learn from patient populations and form a general understanding of 
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variations in anatomy - thus allowing it to capture a representation of common and 
uncommon cases alike. 

Architectures such as CNNs are well suited for supervised diagnostic classification tasks 
(Figure 2B). For both the breast lesion and lung nodule classification tasks, studies 
report a substantial performance gain of deep learning-based CADx - specifically 
those utilizing stacked denoising auto-encoders - over its traditional state-of-the-art 
counterparts. This is mainly owing to the automatic feature exploration mechanism 
and higher noise tolerance of deep learning. Such performance gain is assessed using 
multiple metrics including the area under receiver operating characteristic curve [G] 
(AUC), accuracy, sensitivity and specificity to name a few49. 

Staging systems, such as tumor–node–metastasis (TNM) in oncology, rely on preceding 
information gathered through segmentation and diagnosis to classify patients into 
multiple predefined categories79. This enables a well-informed choice of the type of 
treatment and aids in predicting survival likelihood and prognosis. Staging has generally 
seen little to no automation since it relies on qualitative descriptions that are often 
difficult to quantitatively measure. The automated staging of primary tumor size (T), 
nearby lymph nodes (N), and distant metastasis (M) all require different feature sets and 
approaches. While traditional machine learning might have relied on ensemble methods 
where multiple distinct models are combined, deep learning has the ability to learn 
joint data representations simultaneously80 - making it well suited for such multi-faceted 
classification problems. Most deep learning efforts to detect lymph node involvement 
and distant metastasis - and ultimately obtain an accurate staging - have been carried 
out on pathology images81,82. However, more work on radiographic images is expected 
to appear in the near future.
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 segmentation, diagnosis and staging; and the monitoring of objects for diagnosis and 
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Monitoring 

Disease monitoring is essential for diagnosis as well as evaluating treatment response. 
The workflow involves an image registration preprocess where the diseased tissue is 
aligned across multiple scans, followed by evaluating simple metrics on them using 
predefined protocols - very similar to diagnosis tasks on single time-point images. A 
simple data comparison protocol follows and is used to quantify change. In oncology, 
for instance, examples of these protocols include Response Evaluation Criteria in Solid 
Tumors (RECIST) and World Health Organization (WHO)83 and define information 
regarding tumor size. Here, we find that the main goal behind such simplification 
is reducing the amount of effort and data a human reader must interact with while 
performing the task. However, it is often based on incorrect assumptions regarding 
isotropic tumor growth. While some change characteristics are directly identifiable by 
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humans such as relatively large variations in object size, shape, and cavitation, others are 
not. These could include subtle variations in texture and heterogeneity within the object. 
Poor image registration, dealing with multiple objects as well as physiological changes 
over time all contribute to more challenging change analyses. Moreover, the inevitable 
interobserver variability84 remains to be a major weakness in the process. Computer 
aided change analysis is considered a relatively younger field compared with CADe and 
CADx systems, one that has not yet achieved as much of a widespread adoption85. Early 
efforts in automating change analysis workflows relied on the automated registration 
of multiple images followed by subtracting them from one another, where changed 
pixels are highlighted and presented to the reader. Other more sophisticated methods 
perform a pixel-by-pixel classification - based on predefined discriminative features - 
to identify changed regions and hence produce a more concise map of change86. As 
the predefined features used for registration differ from those used for the subsequent 
change analysis, a multi-step procedure is required combining different feature sets. This 
could compromise the change analysis step as it becomes highly sensitive to registration 
errors. With computer aided change analysis based on deep learning, feature engineering 
is eliminated and a joint data representation can be learned. Deep learning architectures, 
such as recurrent neural networks, are very well suited for such temporal sequence data 
formats and are expected to find ample applications in monitoring tasks.

Other Opportunities 

In addition to the three primary clinical tasks mentioned above, AI is expected to 
impact other image-based tasks within the clinical radiology workflow. These include 
the preprocessing steps following image acquisition as well as subsequent reporting and 
integrated diagnostics (Figure 3A).

Starting at the outset of the workflow, the first of these tasks to be improved is 
reconstruction. We find a widening gap between advancements in image acquisition 
hardware and image reconstruction software, a gap potentially addressed by new 
deep learning methods for suppressing artifacts and improving overall quality. For 
instance, CT reconstruction algorithms have seen little to no change in the past 25 
years87. Additionally, many filtered-back projection image reconstruction algorithms are 
computationally expensive, signifying that a tradeoff between distortions and runtime 
is inevitable88. Recent efforts report deep learning’s flexibility in learning reconstruction 
transformations for various MRI acquisition strategies, by treating the reconstruction 
process as a supervised learning [G] task where a mapping between the scanner sensors 
and resultant images is derived89. Other efforts employ novel AI methods to correct for 
artifacts as well as address certain imaging modality-specific problems such as the limited 
angle problem in CT90 - a missing data problem where only a portion of the scanned 
space can be reconstructed, due to the scanner’s inability to perform full 180° rotations 
around objects. Studies have also utilized CNNs and synthetically generated artifacts 
to combine information from original and corrected images as a means to suppress 
metal artifacts91. More work is needed to investigate the accuracy of deep learning-based 
reconstruction algorithms and their ability to recreate rare unseen structures, as initial 
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errors propagated throughout the radiology workflow can have adverse effects on patient 
outcome. 

Another preprocessing task to be enhanced is registration, as touched upon previously 
in the monitoring section. This process is often based on predefined similarity criteria 
such as landmark and edge-based measures. In addition to the computational power 
and time consumed by these predefined feature-based methods, some are sensitive to 
initializations [G] , chosen similarity features, and the reference image92. Deep learning 
methods could handle complex tissue deformations through more advanced non-rigid 
registration algorithms whilst providing better motion compensation for temporal image 
sequences. Studies have shown that deep learning leads to generally more consistent 
registrations and is an order of magnitude faster compared with more conventional 
methods93. Additionally, deep learning is multi-modal in nature where a single shared 
representation between imaging modalities can be learned94. Multimodal images in 
cancer have enabled the association of multiple quantitative functional measurements 
as in the PET hybrids: PET–MRI and PET–CT, thus improving the accuracy of tumor 
characterization and assessment95. With robust registration algorithms based on deep 
learning, the utility of multimodal imaging can be further explored without concerns 
regarding registration accuracy.

Radiology reports lie at the intersection of radiology and multiple oncology subspecialties. 
However, the generation of these textual reports can be a laborious and routine time-
consuming task. When compared to conventional dictation, even structured reporting 
systems with bulleted formatting have been shown not to improve attending physicians’ 
perception of report clarity96. As the report generation task falls towards the end of the 
radiology workflow, it is the most sensitive to errors from preceding steps. Additionally, 
the current radiologist–oncologist communication model has not been found to be 
optimally coordinated - especially with regards to monitoring lesions over time97. Due 
to the often different formats in which data is recorded by medical professionals, AI-run 
automatic report generation tools can pave the way for a more standardized terminology 
- an area that currently lacks stringent standards as well as an agreed upon understanding 
of what constitutes a ‘good’ report98. Such tools could also replace the traditional 
qualitative text-based approach with a more interactive quantitative one, which has 
been shown to enhance and promote collaboration between different parties99. Within 
lung cancer screening, this could include quantified information about the size and 
location of a nodule, probability of malignancy and associated confidence level. These 
well-structured reports are also immensely beneficial to population sciences and big data 
mining efforts. Following deep learning advances in the automatic caption generation 
[G] from photographic images100, recent efforts have explored means to diagnose 
abnormalities in chest x-rays and automatically annotate it in a textual format101.

After carrying out various clinical tasks and generating radiology reports (Figure 3A), 
AI-based integrated diagnostics could potentially enable healthcare-wide assimilation of 
data from multiple streams, thus capitalizing on all data types pertaining to a particular 
patient. In addition to radiology reports describing findings from medical images and 
their associated metadata, other data could be sourced from the clinic or from pathology 
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or genomics testing. Data from wearables, social media, and other lifestyle quantifying 
sources could all potentially offer valid contributions to such a comprehensive analysis. 
This will be crucial in providing AI biomarkers with robust generalizability towards 
different endpoints. Such consolidation of standard medical data, using traditional AI 
methods, has already demonstrated the ability to advance clinical decision-making in 
lung cancer diagnosis and care27. 

AI Challenges in Medical Imaging

We are currently witnessing a major paradigm shift in the design principles of many 
computer-based tools used in the clinic. There is great debate about the speed with which 
newer deep learning methods will be implemented in clinical radiology practice102, with 
speculations for the time needed to fully automate clinical tasks ranging from a few years 
to decades. The development of deep learning-based automated solutions will begin with 
tackling the most common clinical problems where sufficient data is available. These 
problems could involve cases where human expertise is in high demand or data is far too 
complex for human readers - examples of these include the reading of lung screening 
CTs, mammograms, and images from virtual colonoscopy. A second wave of efforts 
is likely to address more complex problems such as multiparametric MRI imaging. A 
common trait amongst current AI tools is their inability to address more than one task, 
as is the case with any narrow intelligence. A comprehensive AI system able to detect 
multiple abnormalities within the entire human body is yet to be developed. 

Data continues to be the most central and crucial constituent for learning AI systems. 
With one out of four Americans receiving a CT examination103 and one out of ten 
receiving an MRI examination104 annually, millions of medical images are produced 
each year. Additionally, recent well-implemented advances in US-based digital health 
systems - such as the Picture Archiving and Communication System (PACS) - have 
ensured medical images are electronically organized in a systematic manner105,106, with 
parallel efforts in Europe107 and developing countries108. It is clear that large amounts of 
medical data are indeed available, and are stored in such a manner that enables relative 
ease in access and retrieval. However, such data is rarely curated and this represents a 
major bottleneck in attempting to learn any AI model. Curation can refer to patient 
cohort selection relevant for a specific AI task, but can also refer to segmenting objects 
within images. Curation ensures that training data adheres to a defined set of quality 
criteria and is clear of compromising artifacts. It can also help avoid unwanted variance 
in data due to differences in data acquisition standards and imaging protocols, especially 
across institutions, such as the time between contrast agent administration and actual 
imaging. An example of data curation within oncology could include assembling a 
cohort of patients with specific stages of disease and tumor histology grades. While 
photographic images can be labelled by non-experts, using for instance crowdsourcing 
approaches, medical images do require domain knowledge. Hence, it is imperative that 
such curation is performed by a trained reader to ensure credibility - making the process 
expensive. It is also very time consuming, although utilizing recent deep learning 
algorithms promises to reduce annotation time substantially: meticulous slice-by-slice 



Artificial Intelligence in Radiology

65

Ch
ap

te
r 

3

segmentation can potentially be substituted by single seed points within the object and 
from which full segmentations could be automatically generated. The amount of data 
which needs to be curated is another limiting factor and is highly dependent on the AI 
approach - with deep learning methods being more prone to overfitting and hence often 
require more data.

The suboptimal performance of many automated and semi-automated segmentation 
algorithms60 has hindered their utility in curating data as human readers are almost 
always needed to verify accuracy. More complications arise with rare diseases where 
automated labelling algorithms are non-existent. The situation is exacerbated when 
only a limited number of human readers have prior exposure and are capable of 
verifying these uncommon diseases. One solution that enables automated data curation 
is unsupervised learning [G]. Recent advances in unsupervised learning, including 
generative adversarial networks16 and variational autoencoders15 amongst others, show 
great promise as discriminative features are learned without explicit labelling. Recent 
studies have explored unsupervised domain adaptation using adversarial networks to 
segment brain MRI, leading to a generalizability and accuracy close to that of supervised 
learning methods109. Others employ sparse autoencoders to segment breast density and 
score mammographic texture in an unsupervised manner110. Self-supervised learning 
[G] efforts have also utilized spatial context information as supervision for recognizing 
body parts in CT and MRI volumes through the use of paired CNNs111. Nevertheless, 
public repositories such as The Cancer Imaging Archive (TCIA)112 offer unparalleled 
open-access to labelled medical imaging data allowing immediate AI model prototyping, 
and thus eliminating lengthy data curation steps.

Albeit intuitively leading to higher states of intelligence, the recent paradigm shift from 
programs based on well-defined rules to others that learn directly from data has brought 
certain unforeseen concerns to the spotlight. A strong theoretical understanding of deep 
learning is yet to be established113, in spite of the reported successes across many fields 
- explaining why deep learning layers that lie between inputs and outputs are labelled 
as ‘hidden layers’ (Box 1, Figure 2B). Identifying specific features of an image that 
contribute to a predicted outcome is highly hypothetical causing a lack of understanding 
of how certain conclusions are drawn by deep learning. This lack of transparency makes 
it difficult to predict failures, isolate the logic for a specific conclusion, or troubleshoot 
inabilities to generalize to different imaging hardware, scanning protocols and patient 
populations. Not surprisingly, many uninterpretable AI systems with applications in 
radiology have been dubbed ‘black-box medicine’114.

From a regulatory perspective, discussions are underway regarding the legal right of 
regulatory entities to interrogate AI frameworks on the mathematical reasoning 
for an outcome115. While such questioning is possible with explicitly programmed 
mathematical models, new AI methods such as deep learning have opaque inner 
workings as mentioned above. Sifting through hundreds of thousands of nodes in a neural 
network, and their respective associated connections, to make sense of their stimulation 
sequence is unattainable. An increased network depth and node count brings more 
complex decision-making together with a much more challenging system to take apart 
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and explore. On the other hand, we find that many safe and effective US Food and Drug 
Administration (FDA)-approved drugs have unknown mechanisms of action116,117. From 
that perspective and despite the degree of uncertainty surrounding many AI algorithms, 
the FDA has already approved high-performance software solutions albeit having 
somewhat obscure working mechanisms. Regulatory bodies, such as the FDA, have 
been regulating CADe and CADx systems that rely on machine learning and pattern 
recognition techniques since the earliest days of computing. However, it is the shift to 
deep learning that now poses new regulatory challenges and requires new guidance for 
submissions seeking approval. Even after going to market, deep learning methods evolve 
over time as more data is processed and learned from. Thus, it is crucial to understand 
the implications of such lifelong learning in these adaptive systems. Periodic testing over 
specific time intervals could potentially ensure that learning and its associated prediction 
performance are following forecasted projections. Additionally, such benchmarking tests 
need to adapt to AI specifics such as the sensitivity of prediction probabilities in CNNs.

Other ethical issues may arise from the use of patient data to train these AI systems. Data 
is hosted within networks of medical institutions, often lacking secure connections to 
state-of-the-art AI systems hosted elsewhere. More recently, Health Insurance Portability 
and Accountability Act  [G] (HIPAA)-compliant storage systems have paved the way 
for more stringent privacy preservation. Studies have explored systems that enable 
multiple entities to jointly train AI models without sharing their input datasets - only 
sharing the trained model118,119. Other efforts use a decentralized ‘federated’ learning 
approach120. During training, data remains local while a shared model is learnt by 
combining local updates. Inference is then performed locally on live copies of the shared 
model, eliminating data sharing and privacy concerns. ‘Cryptonets’ are deep learning 
networks trained on encrypted data, even making encrypted predictions that can only 
be decrypted by the owner of a decryption key - thus ensuring complete confidentiality 
throughout the entire process121. All these solutions, albeit still in early developmental 
stages, promise to create a sustainable ‘data to AI’ ecosystem - without undermining 
privacy and HIPAA compliance. 

Future Perspectives

From the early days of X-ray imaging in the 1890s to more recent advances in CT, 
MR and PET scanning, medical imaging continues to be a pillar of medical treatment. 
Current advances in imaging hardware - in terms of quality, sensitivity and resolution 
- enable the discrimination of minute differences in tissue densities. Such differences 
are, in some cases, difficult to recognize by a trained eye and even by some traditional 
AI methods used in the clinic. These methods are thus not fully on par with the 
sophistication of imaging instruments, yet another motivation to pursue this paradigm 
shift towards more powerful AI tools. Moreover, and in contrast to traditional methods 
based on predefined features, we find that deep learning algorithms scale with data, 
that is, as more data is generated every day and with ongoing research efforts, we expect 
to see relative improvements in performance. All these advances promise an increased 
accuracy and reduction in the number of routine tasks that exhaust time and effort.
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Aligning research methodologies is crucial in accurately assessing the impact of AI on 
patient outcome. In addition to the undeniable importance of reproducibility and 
generalizability, utilizing agreed-upon benchmarking datasets, performance metrics, 
standard imaging protocols and reporting formats will level the experimentation field 
and enable unbiased indicators. It is also important to note that AI is unlike human 
intelligence in many ways; excelling in one task does not necessarily imply excellence in 
others. Therefore the promise of up and coming AI methods should not be overstated. 
Almost all state-of-the-art advances in the field of AI fall under the narrow AI category, 
where AI is trained for one task, and one task only - with only a handful exceeding human 
intelligence. While such advances excel in interpreting sensory perceptual information 
in a bottom-up fashion, they lack higher level, top-down knowledge of contexts as well 
as fail to make associations the way a human brain does. Thus, it is evident that the field 
is still in its infancy and overhyped excitement surrounding it should be replaced with 
rational thinking and mindful planning. It is also evident that AI is unlikely to replace 
radiologists within the near or even distant future. The roles of radiologists will expand 
as they become more connected to technology and have access to better tools. They 
are also likely to emerge as critical elements in the AI training process, contributing 
knowledge and overseeing efficacy. As different forms of AI exceed human performance, 
we expect it to evolve into a valuable educational resource. Human operators will not 
only be overseeing outcomes, but will also seek to interpret the reasoning behind them - 
as a means of validation as well as potentially discovering hidden information that might 
have been overlooked (Figure 1).

In contrast to traditional AI algorithms locked within proprietary commercial packages, 
we find that the most popular deep learning software platforms available today are open-
source. This has, and continues to, foster experimentation on a massive scale. In terms of 
data, AI efforts are expected to shift from processed medical images to raw acquisition 
data. Raw data is almost always downsampled and optimized for human viewers. This 
simplification and loss of information are both avoidable when the analyses are run 
by machines, but are associated with caveats including reduced interpretability and 
impeded human validation. As more data is generated, more signal is available for 
training. However, more noise is also present. We expect the process of discerning signal 
from noise to become more challenging over time. With difficulties in curating and 
labelling data, we foresee a major push towards unsupervised learning techniques to 
fully utilize the vast archives of unlabeled data. 

Open questions include the ambiguity of who controls AI and is ultimately responsible 
for its actions, the nature of the interface between AI and healthcare and whether 
implementation of a regulatory policy too soon will cripple AI application efforts. 
Enabling interoperability amongst the multitude of AI applications that are currently 
scattered across healthcare will result in a network of powerful tools. This AI web will 
not only function at the inference level, but also at the life-long training level. We join 
the many calls122 that advocate for creating an interconnected network of deidentified 
patient data from across the world. Using such data to train AI on a massive scale will 
enable a robust AI that is generalizable across different patient demographics, geographic 
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regions, diseases, and standards of care. Only then will we see a socially responsible AI 
benefiting the many and not the few.

Glossary

Area under receiver 
operating characteristic 
curve

(AUC). A sensitivity versus specificity metric for measuring the 
performance of binary classifiers that can be extended to multi-class 
problems. The area under the curve is equal to the probability that 
a randomly chosen positive sample ranks above a randomly chosen 
negative one or is regarded to have a higher probability of being 
positive.

Artificial intelligence (AI). A branch of computer science involved with the development 
of machines that are able to perform cognitive tasks that would 
normally require human intelligence.

Caption generation The often automated generation of qualitative text describing an 
illustration or image and its contents.

Ground-glass opacity (GGO). A visual feature of some subsolid pulmonary nodules that 
is characterized by focal areas of slightly increased attenuation on 
computed tomography. Underlying bronchial structures and vessels 
are often visually preserved (being even more recognizable owing to 
increased contrast), thus making the detection and diagnosis of such 
nodules somewhat challenging.

Health Insurance 
Portability and 
Accountability Act

(HIPAA). A US act that sets provisions for protecting and securing 
sensitive patient medical data.

Image registration A process that involves aligning medical images either in terms 
of spatial or temporal characteristics, mostly intramodality and 
occasionally intermodality.

Imaging modalities A multitude of imaging methods that are used to non-invasively 
generate visualizations of the human anatomy. Examples of these 
include computed tomography (CT), computed tomography 
angiography (CTA), magnetic resonance imaging (MRI), 
mammography, ultrasonography (echocardiography) and positron 
emission tomography (PET).

Initializations Within optimization problems, constantly adjusted parameters 
during run time need to be initialized to some value before the 
start of the process. Good initialization techniques aid models in 
converging faster and hence speed up the iteration process.

Machine learning A branch of artificial intelligence and computer science that enables 
computers to learn without being explicitly programmed.
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Multiparametric imaging Medical imaging in which two or more parameters are used 
to visualize differences between healthy and diseased tissue. 
In multiparametric magnetic resonance imaging (MRI), these 
parameters include T2-weighted MRI, diffusion-weighted MRI and 
dynamic contrast enhanced MRI, among others.

Predefined engineered 
features

A set of context-based human-crafted features designed to represent 
knowledge regarding a specific data space.

Probabilistic atlas A single composite image formed by combining and registering pre-
segmented images of multiple patients that thus contains knowledge 
on population variability.

Radiomics A data-centric field investigating the clinical relevance of radiographic 
tissue characteristics automatically quantified from medical images.

Report generation The communication of assessments and findings in both image and 
text formats among medical professionals.

Segmentation The partitioning of images to produce boundary delineations of 
objects of interest. Such a boundary is defined by pixels and voxels 
(3D pixels) when performed in 2D and 3D, respectively.

Self-supervised learning A type of supervised learning where labels are determined by the 
input data as opposed to being explicitly provided.

Supervised learning A type of machine learning where functions are inferred from 
labelled training data. Example data pairs consist of the input 
together with its desired output or label.

Unsupervised learning A type of machine learning where functions are inferred from 
training data without corresponding labels.

Wearables A collective term describing health-monitoring devices, 
smartwatches and fitness trackers that have recently been integrated 
into the health-care ecosystem as a means to remotely track vitals 
and adhere to treatment plans.
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Abstract

Artificial Intelligence (AI) has the potential to fundamentally alter the way medicine 
is practiced, as it excels in recognizing complex patterns in medical data and provides 
a quantitative, rather than qualitative, assessment of clinical conditions. In particular, 
the field of radiation oncology has the potential to be transformed by AI given its 
multifaceted, highly technical nature with heavy reliance on digital data processing and 
computer software, with the potential to improve the accuracy, precision, efficiency, and 
overall quality of radiation therapy (RT) for cancer patients. In this perspective article, 
we begin with a general description of AI methods, then furnish the reader with a high-
level overview of the RT workflow and the impact that AI may have on each of these 
steps. Lastly, the challenges of clinical development and implementation of AI in RT are 
discussed, and our perspective on the changing roles of RT medical professionals. 
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Introduction

Radiation therapy (RT) plays a critical role in the treatment of cancer, and is indicated in 
~50% of cancer patients. However, it is estimated that millions of patients currently lack 
access to this vital treatment1–5, due to barriers such as resource scarcity (e.g. facilities, 
treatment machines, treatment planning systems, etc.), and trained staff6. Furthermore, 
RT has become increasingly complex over the past few decades requiring near complete 
reliance on human-machine interaction including both software and hardware. 

Despite technological advances, much of the RT workflow still requires time-consuming, 
manual labor by a team of medical staff including radiation oncologists, medical 
physicists, medical dosimetrists, and radiation therapists. The growing complexity 
of the human-machine interactions in conjunction with the increasing incidence of 
cancer have created workforce shortages throughout the world and increasingly variable 
quality of care. In fact, variations in the treatment planning process have been shown 
to negatively impact overall survival even in clinical trials where extra care is given 
to standardizing approaches7,8. Furthermore, the RT knowledge and experience gap 
between adequately- and under-resourced health care environments poses an enormous 
public health challenge, and represents one of the great global inequities in cancer care. 

Artificial intelligence (AI) is transforming multiple fields of medicine, and has the 
potential to address many of the challenges faced in RT to improve access to and 
the quality of cancer care throughout the world. Here, we provide an overview of 
the potential for AI to transform the field of RT by walking through each step of the 
workflow and highlighting examples where AI may increase efficiency, accuracy and 
quality of RT, thereby enhancing value-based cancer care delivery in today’s resource-
limited healthcare environment. While the breadth of applications of AI in RT is 
widespread, we have not covered all applications in this article, as we aimed to provide 
a glimpse of the transformative potential of AI in RT and our perspective on the future 
of the radiation oncology workforce.

Artificial Intelligence (AI) Methods

Early AI applications relied on rule-based reasoning, a set of human expert-defined steps 
and procedures to be followed by a computer system9,10. However, these methods often 
failed to generalize to variation in input data and task scope given that lack of intelligent 
components for dealing with edge cases not explicitly described in the knowledge base11. 
Rule-based AI systems found varying degrees of clinical utility12 until the 2010’s when 
there was a fundamental shift in the algorithms powering the automation of image-
based tasks. This shift was marked by the revival of neural networks, a class of machine 
learning algorithms loosely based on our presumed understanding of how the human 
brain functions. 

Research in neural networks has evolved from the mathematical developments of 
backpropagation in the 1960’s13 - the main mechanism in training neural networks - 
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towards simple networks in the 1980’s14,15. The large amounts of data available today, 
increased computational power, and advances in algorithm development have all revived 
interest in the subject leading to “deeper” neural networks with multiple intermediate 
hidden layers between inputs and outputs. The utilization of such algorithms has 
obviated the need for rule predefinition, as a mapping between inputs and outputs 
can be learned from training data automatically. This approach provides deep learning 
algorithms a larger learning capacity than its predecessors and subsequently an ability to 
approximate very complex non-linear relationships in data. Deep learning can therefore 
begin to approximate human capabilities for highly complex tasks, and has been applied 
in several medical scenarios16. 

The RT workflow contains a multitude of complex tasks, including tumor and organ 
segmentation, dose optimization, outcome prediction, and quality assurance, which 
have seen varying degrees of digitization and consequent automation over the years. 
This heterogeneity is also reflected in the data types used, ranging from radiographic 
images and dose maps to hardware calibration log files and maintenance records. A 
non-exhaustive list of recent AI algorithms and examples of tasks addressed in radiation 
oncology can be found in Table 1. The multimodal nature of deep learning architectures17 
may allow for cross-modality learning, generalizability, and aggregation across these 
different data streams for improved clinical decision making and better quality of cancer 
care for all patients18.

 computational power, and advances in algorithm development have all revived interest in the 
 subject leading to "deeper" neural networks with multiple intermediate hidden layers between 
 inputs and outputs. The utilization of such algorithms has obviated the need for rule 
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 Figure 1:  A general overview of the radiation therapy  (RT)  workflow with brief descriptions of 
 expected AI applications in each step. The RT workflow begins with the decision to treat the 
 patient with RT, followed by a simulation appointment where images are acquired for treatment 
 planning. After the patient-specific treatment plan is created, the plan is approved, reviewed and 
 has quality assurance (QA) measures performed on it prior to delivery to the patient. The patient 
 is then seen for follow-up care. 
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Impact of  AI on the Radiation Therapy Workflow 

The RT workflow can be divided into several steps including treatment decision, 
preparation, planning, delivery and follow-up (Figure 1). Here we described key tasks 
of each step, the staff involved, and provide a few examples of how AI may have an 
impact. For steps in the workflow where we do not foresee AI to have a significant 
impact (e.g. the actual delivery of radiation), we have not provided examples.

A. Evaluation and Clinical Plan
I. Patient evaluation
The first step of the RT clinical workflow is patient intake and evaluation, which is 
typically a consultation by the radiation oncologist and includes reviewing the patient’s 
symptoms, medical history, physical exam, pathological and genomic data, diagnostic 
studies, prognostication, comorbidities, and potential toxicity from RT, and making a 
recommendation for a treatment plan based on a synthesis of these data. An emerging 
challenge for clinicians is the continuing growth of data available that are orders of 
magnitude beyond what the human can rapidly identify and interpret. AI-based 
methods that can automatically extract key features that are clinically actionable will be 
critical to building decision support tools for the clinician at the initial point of care. 
Advances in AI approaches for medical imaging19 and natural language processing for 
electronic medical records,20,21 have shown initial promise in guiding treatment selection 
and/or clinical management. These AI-built models have been reported to potentially 
improve prognostication22,23 and predict outcomes after treatment21,24–26 but have not 
seen clinical implementation yet.

II. Dose prescription
The prescribed dose to the tumor and dose constraints to the organs are determined 
by the radiation oncologist prior to treatment planning based on nationally accepted 
standards and clinical trial data. However, variation in tumor biology may result in 
substantially different radiation sensitivity, even for a given cancer type. Furthermore, 
depending on the geometrical arrangement of the tumor and organs, the desired dose 
may not be achievable, which is often not known until after the planning process is near 
completion. AI may enable personalization of RT by predicting the tumor’s radiation 
sensitivity27, what is achievable in a treatment plan based on contours of the tumor and 
organs, and an optimal dose prescription.

B. Treatment Preparation
I. Treatment Simulation (imaging for planning)
In preparation for treatment planning, planning appointments take place where a 
patient is immobilized to prevent significant motion during treatment. In most cases, 
medical images are acquired in this position, which are then used for treatment planning. 
Depending on the disease site, this process can be very complex and user-dependent, 
often requiring physician and physicist involvement. For example, special consideration 
is taken to evaluate the potential interference between areas in the immobilization device 
and treatment beam angles or patient-specific issues that may result in collision with the 
treatment machine. Similar to how AI has been able to expedite treatment planning 
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based on a patient’s anatomy28–30, we speculate that AI could have a role in identifying 
challenges that may be encountered at treatment simulation based on the patient’s 
anatomy, and offer solutions input from the algorithm training data, thus expediting 
and optimizing the planning process. 

i. Patient image acquisition 
Many patients treated with RT require multiple medical images for treatment planning 
such as computed tomography (CT) for calculating radiation dose, and MRI for 
segmentation of tumors. Typically, these images are acquired in different patient 
positions (CT in the treatment position, other modalities acquired for diagnostic 
imaging in a different position), which introduces uncertainty when aligning the images. 
One method to minimize this uncertainty is to eliminate the need for a CT and acquire 
an MRI that can also provide electron density information (i.e. synthetic CT). AI has 
been employed to develop synthetic CTs from MRIs of the brain31,32 and pelvis33, with 
minimal dose differences in the treatment plans compared to the actual CT31,33. This 
could also improve clinical efficiency by reducing the number of appointments patients 
need to attend and radiation exposure from CT scans.

Advances in technology have led to the emerging role of MRI in RT, with the installation 
of integrated MRI-RT treatment units34–36. High resolution and low noise MRIs require 
long acquisition times, and a compromise is made between the resolution and signal-
to-noise ratios necessary to suppress image noise and perform clinical tasks and image 
acquisition time. AI has the potential to reduce MR scan times by enabling reconstruction 
of fine structures from undersampled MRIs and has been developed for the generation 
of high resolution, high contrast and low noise brain37–39 and cardiac MRI40. Due to 
the complexities of integrating MRI with a treatment machine, current systems are 
built with low strength magnets, typically 0.35-1.5 T41–43 which reduces image quality 
compared to high resolution MR scans. AI could enable the reconstruction of high 
signal, high resolution images from low field strength images; for example, 7T-like 
images of the brain from 3T MRI44 to improve the visualization of tumors throughout 
treatment. 

ii. Image processing and registration 
Image registration is an integral part of the RT workflow where data from multimodality 
and longitudinal images are used in treatment planning, delivery and monitoring 
radiation delivery. Commercially available automatic registration algorithms are 
typically designed to perform well only for modality-specific registration problems 
and are sensitive to image artifacts which compromises accuracy, and often requires 
additional manual edits to achieve a clinically acceptable registration.

AI tools have been trained to determine the sequence of motion actions to result in 
optimal image alignment, and shown better accuracy and robustness than several state-
of-the-art methods45 and are generalizable across multiple imaging modalities45,46. 
Furthermore, AI has been able to improve registration robustness against imaging 
artifacts, such as with x-ray images of the spine that contained metal artifacts from metal 
screws and guide wires47 and motion artifacts, such as with fetal MRI48. AI tools have 
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been developed for initial applications in image registration with MRI49, x-ray50,4751, 
CT/MRI52 and MRI/PET registration53. Although many of these algorithms for image 
registration have not been developed in the context of RT, challenges they address are 
also faced in RT and could be applied here to improve the RT workflow. 

II. Dosimetric Treatment Planning
i. Tumor segmentation for targeting radiation
Currently, one of the most time-consuming but critical steps, for the radiation 
oncologist is the manual segmentation of the primary tumor and affected lymph 
nodes. The accuracy of segmentation can directly impact outcomes; an incorrectly 
delineated tumor may lead to under- or over-dosing, resulting in a decrease in the 
likelihood of tumor control or increased toxicity, respectively. There is inter-observer 
variation in tumor segmentation, even among expert radiation oncologists54,55, which 
can lead to differences in treatment plan quality and directly impact survival7,8,56,577,56,57. 
Current semi-automated segmentation tools that incorporate prior knowledge, such as 
segmentation atlases, have been unreliable or inaccessible to many radiation oncologists 
due to costs and still require significant manual effort58,59.

AI approaches have the potential to dramatically increase the efficiency, reproducibility, 
and quality of RT planning by developing automated segmentation approaches, such 
as those developed for nasopharyngeal carcinomas60, primary lung tumors61, and 
oropharyngeal carcinomas62. The quality of these segmentations performed similarly 
against human experts. Further studies are required to directly compare the impact 
of AI approaches on efficiency, reproducibility and quality against the current clinical 
standard within the RT clinical workflow. 

ii. Organ segmentation
Organs adjacent to the tumor are segmented in order to measure and restrict the radiation 
dose to those critical organs within safe limits during the planning process. Early AI 
approaches have demonstrated promise in the ability to delineate a variety of organs 
throughout the body including the complex anatomy of the head and neck region63, 
thoracic organs64, kidneys65, liver66,67, and cardiac substructures68, however, these studies 
are limited by small training sets and potential over-fitting. The largest scale example of 
this approach involves an academic-industry partnership between Google DeepMind 
and partnering with the RT Department at University College London Hospitals to 
develop an algorithm capable of segmenting organs in the head and neck region with 
performance comparable to human experts using a training data set of 663 patients69. 
With commercially-available AI-based auto-segmentation tools starting to become 
available in treatment planning systems, there is a need for tools to perform quality 
assurance on these AI processes to identify errors from auto-segmentation70. 

iii. Treatment plan generation (dose optimization) 
With medical images, segmentations, and dose prescription provided, the medical 
dosimetrist aims to generate the most optimal treatment plan for the patient with the 
goal of maximizing the dose delivered to the tumor while sparing surrounding organs. 
Treatment planning is a time-intensive, iterative process where the dosimetrist designs 
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the dose distribution, making the necessary changes in a trial-and-error based fashion to 
achieve the goals outlined in the prescription. The treatment plan is then evaluated by the 
radiation oncologist before approval for treatment. The plan quality achieved depends 
on several different human factors resulting in a large variation among treatment plans 
both intra- and inter-institutionally71. 

Current strategies that aim to standardize and improve efficiency involve automation 
of hard coded rules to perform repetitive tasks or optimization of plan parameters with 
pre-defined plan objectives using statistical methods72,73. These methods are designed for 
specific treatment sites, and have difficulty handling varying ranges of plan complexity, 
and patient-specific tradeoffs. 

AI tools for automating treatment planning have two main steps: 1) predicting the 
optimal dose distribution, 2) identifying the treatment machine parameters to achieve 
that distribution. Several studies showed the ability of deep learning algorithms to predict 
optimal dose distributions for patients based on their anatomy28–30 and to accelerate 
dose calculations74. In order for AI-based treatment planning algorithms to generate a 
high quality plan, the algorithms require information regarding the complex decision-
making process to be included in the model, similar to those used to play ATARI games75 
or the board game Go76. Recent studies have applied these gamification concepts to 
automatically generate treatment plans for cervical cancer77, and lung cancer78. Overall, 
AI techniques have the potential to substantially improve this critical step in the RT 
workflow by providing prediction of what radiation dose distributions can be safely 
achieved in advance so that clinicians can select the optimal treatment approach and 
then generating the treatment plan to deliver the optimal radiation dose. Thus, AI has 
the potential in the near-term to fully automate the treatment planning process.

C. Pre-treatment Review and Verification
After the clinician approves the treatment plan, medical physicists perform plan checks 
and other QA checks to ensure that all the technical components involved in treatment 
delivery are functioning and set correctly to deliver the intended dose to the patient. To 
reduce repetitive, time-consuming manual measurements, and improve efficiency, AI 
has been developed for some QA activities, such as patient-specific and machine QA 
measurements.

Patient-specific QA involves assessment of treatment plans to detect human error and 
potential anomalies in software and hardware machine performance. These include 
checking plan and treatment parameters, and verifying the patient’s planned dose against 
the delivered dose. AI tools have been developed to expedite this process, and to detect 
rare events. For example, a physical measurement is currently performed for highly 
complex treatments, to compare the planned and delivered dose. While the majority 
of plans pass this QA, in the rare case that a plan fails, there are many contributing 
factors that require investigation and may delay patient treatment. An AI algorithm was 
designed to predict QA passing rates from the plan itself and identifying the potential 
sources of error, eliminating the need for physical dose measurement79,80.
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Machine QA evaluates the accuracy and precision of treatment machine characteristics 
and are conducted on a daily, weekly, monthly and annual basis. The plethora of data 
acquired has provided the means to develop AI algorithms that are capable of predicting 
trends and errors, such as multi-leaf collimator positional errors81, beam symmetry 
trends82, and to automatically detect imaging artifacts83. 

D. Treatment 
I. Treatment set-up and delivery
i. Scheduling
Patients enter the department for several appointments including consultation, radiation 
planning, treatment, and follow-ups, all of which can have varying durations and wait 
times. Extended wait times impact both the efficiency of the clinic and patient anxiety 
and satisfaction84. AI has the potential to identify the most critical factors that contribute 
to wait time duration (such as time of day, fraction number, median past duration of 
treatments, number of treatment fields and previous treatment duration85), and predict 
wait times, enabling optimization of clinic flow and efficiency. Appointment scheduling 
may be further optimized based on the treatment site, immobilization and treatment 
technique used to decrease the room turnover time between patients; thereby increasing 
efficiency and accommodating a higher patient load.

ii. Image guidance and motion management
A key part of RT delivery is setting up the patient in the same position that the treatment 
plan was created. Currently, the most common on-treatment imaging method uses the 
treatment machine’s cone beam CT (CBCT) to set-up the patient, which suffers from 
severely decreased image quality compared to the planning CT. AI has been applied to 
improve the image quality of CBCT for better patient set-up86. Increasingly complex 
and multi-modality imaging techniques are being incorporated into image-guided RT 
including the use of on-board MRI, ultrasound, optical surface imaging, and represent 
a unique opportunity for imaging-based AI methods to enhance and/or synthesize 
complex data at the point of care.

Patient or organ motion throughout treatment can result in increased dose to normal 
tissue in order to ensure that the tumor volume is adequately treated. Motion 
management methods aim to reduce, capture and/or monitor the extent of motion 
from respiration and/or digestion. Variability in motion exists between and within 
individuals in magnitude, amplitude and frequency, and movement relative to other 
organs requiring predictive modelling of tumor motion. AI may accommodate these 
factors by generating patient-specific models that can adapt to changes in motion 
patterns to improve tumor tracking. Thus far, research in this area has largely focussed 
on the prediction of respiratory motion using data collected from external surrogates87–89 
as inputs for the models. These algorithms could be automatically adjusted in real-time 
for complex breathing patterns87. 
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II. Adaptive treatment 
Significant deviations in a patient’s anatomy between the planning appointment and 
actual treatment (days to weeks later) or throughout treatment (over several weeks) 
may warrant re-planning. These deviations are often due to tumor shrinkage/growth or 
anatomical variations that can result in varying dose to the tumor and organs. Adaptive 
treatments involve creating a new treatment plan based on an updated image of the 
patient’s anatomy. Currently the physician must decide when anatomic changes are 
large enough to be clinically relevant based on their qualitative clinical assessment of 
a patient’s clinical parameters and images. AI may provide the tools to predict which 
patients will require adaptation and the ideal time point at which it should occur, such as 
AI tools developed for head and neck patients to predict geometric changes throughout 
treatment90,91. Similar approaches have been applied for lung cancer patients to identify 
the need for plan adaptation based on changes between the initial and on-treatment 
images92 to maximize tumor local control and reduce radiation-induced pneumonitis78. 

E. Completion
I. Response assessment and follow-up care
The Response Evaluation Criteria in Solid Tumors93 is the most widely adopted system 
for evaluating treatment response of solid tumors based on the size and presence of the 
tumor. AI has the potential to provide more detailed information about the tumor’s 
response to radiation throughout the course of treatment, such as changes in the 
tumor phenotype captured in imaging features, that may provide better assessment and 
prediction of response. Early studies have used AI with pre- and post-treatment imaging 
for early assessment of response in lung27,94,95, bladder96 pancreatic cancer97,98.

Furthermore, the presence of radiation-induced organ damage can obfuscate the 
detection of disease recurrence. Early studies have shown that AI has the potential to 
detect early changes in the lung that were associated with local recurrence and may be 
overlooked by physicians as radiation-induced fibrosis99. This additional information 
would enable earlier, personalized treatment interventions to improve outcomes.

II. Toxicity Prediction and Management
Managing acute and late toxicities in patients is difficult due to the unpredictability of 
its presence and/or severity. Predictive models of radiation toxicity may be generated 
from risk factors, including clinical data, germline genomics and dose distribution, and 
imaging data to guide treatment planning. To date, most approaches have focused on 
subsets of this data and/or extrapolation of radiobiological modeling from pre-clinical 
and observational studies. 

AI may be poised to analyze these data streams more comprehensively to build more 
robust models100, that incorporate co-morbidities, dose and pre-treatment imaging 
data to provide clinical decision support for anticipatory management and secondary 
prevention. For example, AI-based normal tissue complication probability models were 
developed for head and neck cancer patients to predict the severity of acute dysphagia101, 
xerostomia102, and oral mucositis103. Other studies have developed models for predicting 
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radiation-induced pneumonitis104–106, esophagitis107, rectal toxicity108, and epilepsy109 in 
other disease sites.

On-treatment clinical data can also be used to provide guidance on potentially severe 
toxicity. AI methods trained on clinical data from electronic medical records have been 
demonstrated to accurately predict the risk of acute toxicities, leading to emergency room 
visits and hospital admission for patients receiving chemoradiation21. The integration of 
multiple clinical datastreams to provide advanced forecasting of adverse events during 
RT is a representative example of the power of AI to provide real-time, impactful clinical 
decision support at the point of care.

 II.  Toxicity Prediction and Management 

 Managing acute and late toxicities in patients is difficult due to the unpredictability of its 
 presence and/or severity. Predictive models of radiation toxicity may be generated from risk 
 factors, including clinical data, germline genomics and dose distribution, and imaging data to 
 guide treatment planning. To date, most approaches have focused on subsets of this data 
 and/or extrapolation of radiobiological modeling from pre-clinical and observational studies. 

 AI may be poised to analyze these data streams more comprehensively to build more 
 robust models  100  , that incorporate co-morbidities,  dose and pre-treatment imaging data to 
 provide clinical decision support for anticipatory management and secondary prevention. For 
 example, AI-based normal tissue complication probability models were developed for head and 
 neck cancer patients to predict the severity of acute dysphagia  101  , xerostomia  102  , and oral 
 mucositis  103  . Other studies have developed models  for predicting radiation-induced 
 pneumonitis  104–106  , esophagitis  107  , rectal toxicity  108  ,  and epilepsy  109  in other disease sites. 

 On-treatment clinical data can also be used to provide guidance on potentially severe 
 toxicity.  AI methods trained on clinical data from electronic medical records have been 
 demonstrated to accurately predict the risk of acute toxicities, leading to emergency room visits 
 and hospital admission for patients receiving chemoradiation  21  .  The integration of multiple 
 clinical datastreams to provide advanced forecasting of adverse events during RT is a 
 representative example of the power of AI to provide real-time, impactful clinical decision 
 support at the point of care. 

 Figure 2:  Detailed breakdown of the RT workflow with  indications of staff involvement and 
 patient-facing steps. The RT workflow can be broken down into evaluation and clinical plan, 
 treatment preparation, treatment and completion. Within each of these categories, various steps 
 are outlined with staff involved in each step, such as the radiation oncologist, medical physicists, 
 dosimetrists, therapists and administrative staff. 
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Development Challenges

Multiple challenges lie ahead of developing clinical AI solutions, with data arguably 
being the most critical component. The amount of data needed for high accuracy AI 
applications strongly depends on the application and the nature of the outcome data. 
The wealth of data generated with every patient often requires laborious curation before 
it can be utilized in developing AI models, especially given the lack of standards in its 
generation. Areas that suffer from weak standard definitions include organ definitions 
and anatomical extents110, treatment techniques, tumor recurrence, toxicity severity 
grading, and the concepts and metrics used to evaluate treatment plans111,112. This inhibits 
the sharing and aggregation of data across institutions- a prerequisite for developing AI 
models that accurately capture the full breadth of clinical variation while avoiding bias 
toward local standards. While medical data repositories such as The Cancer Imaging 
Archive113 have helped promote sharing practices and professional organizations have 
attempted to standardize ontology114,115, more work remains ahead. 

The proprietary nature of the treatment planning software for their optimization 
algorithms is another hurdle facing the development of AI solutions. This challenge has 
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been alleviated as some vendors start to release application programming interfaces that 
allow research efforts to communicate with and integrate into clinical software, albeit 
with restricted scopes.

Furthermore, early research has focused on easily measured outcomes, such as overall 
survival, which may not be the best outcome of interest for all patients treated with 
RT. Instead, AI solutions will begin to move toward outcomes that are more directly 
pertinent to RT, such as the prediction of radiation-specific outcomes (e.g. tumor 
control, radiation toxicities), however, the collection of robust outcomes continues to 
be a challenge. 

Clinical Implementation Challenges

Clinical adoption is a key barrier to realizing the potential of AI in RT as the introduction 
of AI tools will require an upfront investment of time and effort to understand their 
utility and limitations, and redesign current clinical workflows. Many research studies 
remain at the proof-of-concept stage and lack external validation116, resulting in a 
slow translation into routine practice117 where demonstration of generalizability and 
effectiveness becomes unattainable. Establishing trust in AI systems is also crucial, given 
the black box nature of many machine learning algorithms and specifically deep learning. 
Despite active research in AI interpretability118, this lack of transparency hinders our 
ability to understand AI outputs, predict failures, and troubleshot generalizability issues. 
Without actively monitoring deployed AI performance, as well as continuous assessment 
of training data fit to the problem at hand, errors may increase as systematic biases are 
introduced into these systems.

Current AI tools are not perfectly accurate, and thus, three criteria can be used to evaluate 
the potential for clinical implementation: 1) time and ability for the user to judge the 
accuracy of the result, 2) correct the erroneous result, and, 3) consequence of it on a 
patient. Even in the case of severe consequences, clinical implementation can be fairly 
straightforward as long as inaccuracies by the model are detected by staff and corrected 
before moving on to the next step in the RT workflow. However, if the time and ability 
required for the user to judge the accuracy of the result outweighs the efficiency or 
accuracy gains of using an AI-tool, the potential for clinical implementation will be 
lower. Furthermore, for applications where the user cannot judge the correctness of 
the result, for instance when a tumor is not visible on the image and an AI tool is used 
for auto-segmentation, the risk-benefit ratio of using the AI-based tool is much more 
challenging. Tasks assisted or completed by AI that could have a significant impact on a 
patient’s treatment will face a greater challenge with clinical implementation because of 
the potential consequence to the patient. 

From a legal standpoint, means of governing algorithmic decision-making are yet to be 
fully developed, including the right to be given an explanation for algorithm outputs as 
well as implications of data protection laws119,120. While AI has the potential to reduce 
medical errors, it is also expected to alter the legal landscape around clinical liabilities 
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and responsibilities121. In terms of ethics, algorithms used for facial detection122 and 
predicting offenders’ risk of recidivism123 have already demonstrated inherent racial 
bias, with applications in health care already starting to suffer similar obstacles124. The 
increased utilization of AI will change the dynamics of the patient-doctor relationship, 
while unethical AI may be developed by parties with ulterior motives and skew results 
toward financial gain125. All these challenges must be addressed ahead of effective 
widespread adoption.

Regulation and Clinical Evaluation

Currently, AI technologies are classified as software as a medical device (SaMD) by the 
US Food & Drug Administration and international regulatory bodies126. Many of its 
applications in RT will fall under these regulatory standards, such as treatment planning 
decision-support software which has been explicitly identified as a SaMD127,128. While 
much discussion has recently focused on timing of re-evaluation of new devices and locked 
versus continuously learning AI algorithms129, clearer standards for clinical evaluation 
to determine the utility of these devices are needed. AI tools can have implications 
for patient outcomes in ways that can only be identified with robust retrospective or 
prospective studies carried out in representative populations. 

While randomized clinical trials are the gold standard for evaluation of oncology 
therapies, this is neither feasible nor necessary for all AI tools. Tools that have the 
potential to affect outcomes, costs and efficiency should be considered for prospective 
clinical evaluation130. Given the rapid proliferation of these technologies, master 
protocols evaluating multiple technologies of a single class across a range of malignancies 
may make such efforts more efficient and feasible130. While Phase I/II studies may be 
adequate for low-risk devices that remain under provider surveillance, Phase III studies 
will be needed for high-risk tools that are used without standard clinical oversight. 
Post-market surveillance will be critical to assess the value of AI-based RT devices as 
they interact with other hardware and software which may affect their function. High-
quality, risk-stratified clinical validation can establish the value of, and engender trust in 
these devices, which is particularly important for these black-box systems that can have 
an impact on cancer care.
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 can have an impact on cancer care. 

 Figure 3:  Members of the RT workforce (therapists,  radiation oncologists, medical physicists 
 and dosimetrists) are shown along a spectrum of interactions with patients and computers. Our 
 projection of how each profession is expected to evolve with the clinical integration of AI tools is 
 shown and described. 

 PERSPECTIVE: IMPACT OF AI ON THE RADIATION ONCOLOGY WORKFORCE 

 As the shift toward AI integration into RT clinics unfolds over the next few decades, the role of 
 existing staff will be redefined, especially those that spend time on repetitive manual tasks. AI 
 will predominantly impact staff members that perform “back-of-house” activities, including the 
 technical aspects of RT such as segmentation, plan design, and QA, with less of an impact on 
 “front-of-house” activities, that have direct interaction with the patient, typically carried out by 
 physicians, therapists and nurses  (Figure 3)  . As the  role of nursing is predominantly 
 patient-facing, their roles will not be significantly changed by the integration of AI in the clinic. 

 A. Impact on Radiation Oncologists 

 As AI-based segmentation algorithms begin to replace the manual work of radiation oncologists, 
 there will be a shift in focus on quality control of AI output and provide more time for high-value, 
 “front-of-house” activities of human interaction, such as patient counseling, education, support 
 and clinical management. Implementation of AI solutions will likely increase standardization of 
 tumor segmentations and reduce unwarranted variation, particularly in under-resourced health 
 care environments, which may translate into improved clinical outcomes and quality of care. 

 Training will need to evolve from current residency training models that focus on 
 memorization of clinical facts and lengthy apprenticeships in order to gain expertise to perform 
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Perspective: Impact of  AI on the Radiation Oncology Workforce

As the shift toward AI integration into RT clinics unfolds over the next few decades, 
the role of existing staff will be redefined, especially those that spend time on repetitive 
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the role of nursing is predominantly patient-facing, their roles will not be significantly 
changed by the integration of AI in the clinic. 

A. Impact on Radiation Oncologists
As AI-based segmentation algorithms begin to replace the manual work of radiation 
oncologists, there will be a shift in focus on quality control of AI output and provide 
more time for high-value, “front-of-house” activities of human interaction, such as 
patient counseling, education, support and clinical management. Implementation of 
AI solutions will likely increase standardization of tumor segmentations and reduce 
unwarranted variation, particularly in under-resourced health care environments, which 
may translate into improved clinical outcomes and quality of care. 

Training will need to evolve from current residency training models that focus on 
memorization of clinical facts and lengthy apprenticeships in order to gain expertise to 
perform manual segmentation and evaluate plans. Instead, we predict that future training 
will focus on a deeper understanding of how to integrate and interpret information from 
large data-sets to support clinical decision making.
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B. Impact on Medical Physicists
AI has the potential to reduce the frequency and/or breadth of routine QA tasks of 
medical physicists by analyzing patterns and trends to predict when a technology may 
need to be serviced. This would cause a shift in the focus of physicists towards proactive 
prevention of non-routine, high-risk problems and implementation of new technologies 
that require human creativity and intuition. As the field of RT moves towards greater 
complexity treatments, the role of the physicist will continue to be key to ensuring the 
accuracy, precision and clinical release of technologies involved, including AI. Thought 
leaders have called for transitioning physicists from “back-of-house” work into a more 
clinical, patient-facing role as a means of improving the quality of information provided 
to patients, as well as enhancing their experience and satisfaction131–133. If realized, and 
with appropriate training132, our perspective is that the physicist’s role will be further 
strengthened, even with automation of their technical tasks.

C. Impact on Medical Dosimetrists/Treatment Planners
The medical dosimetrist currently performs many of the manual treatment planning 
tasks, which are most likely to be disrupted by AI approaches. Studies have shown that 
variation in plan quality is generally attributed to the overall “planner skill” as opposed 
to other parameters including experience, certification, and education134. This suggests 
the potential benefits of automating dosimetrists’ tasks, especially to reduce variability of 
delivered care. The potential for auto-generated treatment plans to reduce the workload 
for medical dosimetrists has been suggested to be reliant on the clinical accuracy of 
the plans generated135. Further study is required to provide the confidence for a shift 
towards complete automation, yet early studies have demonstrated promising potential. 
In the short term, the dosimetrist’s scope is expected to focus on more high risk and 
complex cases that are challenging for current AI approaches. AI will likely disrupt this 
profession substantially in the long term, due to automation. According to the 2017 
American Association of Medical Dosimetry salary survey, 45% of respondents felt 
they were understaffed136 – automation may have a place for reducing the dosimetrists’ 
workload to reach appropriate staffing levels, or lead to significant reductions in the 
number of dosimetrists.

D. Impact on Radiation Therapists
The radiation therapists serve as the final gatekeeper of therapeutic delivery to ensure 
safe treatments and avoid treatment misadministration. AI could provide software tools 
to help the therapists ensure accurate and safe treatments, and increase efficiency and 
patient access, however, we believe that the radiation therapists will continue to serve an 
important role in being present to monitor the performance of these automated systems 
and the patient.

Future Perspectives

Beyond gains in accuracy, reproducibility and consistency, partnering human intuition 
and the capacity of AI to handle large data sets has the potential to drastically improve 
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efficiency and throughput in RT. This has recently become of prime importance in an 
era of cost reduction together with the shift from fee for service to value-based care137. 

The global health landscape also stands to benefit from AI interventions138. Over half of 
cancer patients live in low- and middle-income countries139. Workforce and equipment 
shortages in these resource-constrained settings have left over 50% of patients expected 
to benefit from RT without access to treatment, and up to 90% in some low-income 
countries140. Software AI applications promise to alleviate some of these shortages by 
providing specialized expert knowledge across disease sites and treatment modalities. 
Addressing hardware equipment shortages with AI, however, remains unclear, although 
AI may help support existing equipment upkeep by analyzing machine QA reports82. 

Ultimately, while the impact of AI will undoubtedly change the composition and skill 
set of the radiation oncology workforce, these changes will largely be for the positive 
and allow the field to continue to bend the cost curve through greater efficiency while 
improving the quality of care.
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Abstract

Background: Non-small-cell lung cancer (NSCLC) patients often demonstrate varying 
clinical courses and outcomes, even within the same tumor stage. This study explores 
deep learning applications in medical imaging allowing for the automated quantification 
of radiographic characteristics and potentially improving patient stratification.

Methods and findings: We performed an integrative analysis on 7 independent datasets 
across 5 institutions totaling 1,194 NSCLC patients (age median = 68.3 years [range 
32.5–93.3], survival median = 1.7 years [range 0.0–11.7]). Using external validation 
in computed tomography (CT) data, we identified prognostic signatures using a 3D 
convolutional neural network (CNN) for patients treated with radiotherapy (n = 771, 
age median = 68.0 years [range 32.5–93.3], survival median = 1.3 years [range 0.0–
11.7]). We then employed a transfer learning approach to achieve the same for surgery 
patients (n = 391, age median = 69.1 years [range 37.2–88.0], survival median = 3.1 
years [range 0.0–8.8]). We found that the CNN predictions were significantly associated 
with 2-year overall survival from the start of respective treatment for radiotherapy (area 
under the receiver operating characteristic curve [AUC] = 0.70 [95% CI 0.63–0.78], p 
< 0.001) and surgery (AUC = 0.71 [95% CI 0.60–0.82], p < 0.001) patients. The CNN 
was also able to significantly stratify patients into low and high mortality risk groups 
in both the radiotherapy (p < 0.001) and surgery (p = 0.03) datasets. Additionally, 
the CNN was found to significantly outperform random forest models built on 
clinical parameters—including age, sex, and tumor node metastasis stage—as well as 
demonstrate high robustness against test–retest (intraclass correlation coefficient = 
0.91) and inter-reader (Spearman’s rank-order correlation = 0.88) variations. To gain a 
better understanding of the characteristics captured by the CNN, we identified regions 
with the most contribution towards predictions and highlighted the importance of 
tumor-surrounding tissue in patient stratification. We also present preliminary findings 
on the biological basis of the captured phenotypes as being linked to cell cycle and 
transcriptional processes. Limitations include the retrospective nature of this study as 
well as the opaque black box nature of deep learning networks.

Conclusions: Our results provide evidence that deep learning networks may be used 
for mortality risk stratification based on standard-of-care CT images from NSCLC 
patients. This evidence motivates future research into better deciphering the clinical 
and biological basis of deep learning networks as well as validation in prospective data.
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Author summary

Why was this study done?
• Cancer is one of the leading causes of death worldwide, with lung cancer being 

the second most commonly diagnosed cancer in both men and women in the 
USA.

• Prognosis in lung cancer patients is primarily determined through tumor staging, 
which in turn is based on a relatively coarse and discrete stratification.

• Radiographic medical images offer patient- and tumor-specific information that 
could be used to complement clinical prognostic evaluation efforts.

• Recent advances in radiomics through applications of artificial intelligence, 
computer vision, and deep learning allow for the extraction and mining of 
numerous quantitative features from radiographic images.

What did the researchers do and find?
• We designed an analysis setup comprising seven independent datasets across five 

institutions totaling 1194 NSCLC patients imaged with computed tomography 
and treated with either radiotherapy or surgery.

• We evaluated the prognostic signature of quantitative imaging features extracted 
through deep learning networks, and assessed its ability to stratify patients into 
low and high mortality risk groups as per a two-year overall survival cut off.

• In patients treated with surgery, deep learning networks significantly outperformed 
models based on predefined tumor features as well as volume and maximum 
diameter.

• In addition to highlighting image regions with prognostic influence, we evaluated 
the deep learning features for robustness against physiological imaging artifacts 
and input variability, as well as correlated them with molecular information 
through gene expression data.

What do these findings mean?
• We found that deep learning features significantly outperform existing 

prognostication methods in surgery patients, hinting at their utility in patient 
stratification and potentially sparing low mortality risk groups from adjuvant 
chemotherapy.

• We demonstrated that areas within and beyond the tumor - especially the tumor-
stroma interfaces - had the largest contributions to the prognostic signature, 
highlighting the importance of tumor-surrounding tissue in patient stratification.
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• Preliminary genomic associations in this study suggest correlations between the 
deep learning feature representations and cell cycle and transcriptional processes.

• Despite their obscure inner workings and lack of a strong theoretical backing, 
deep learning networks demonstrate a prognostic signal and robustness against 
specific noise artifacts. This motivates further prospective studies validating 
their utility in patient stratification and the development of personalized cancer 
treatment plans.
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Introduction

Cancer’s ever evolving nature and interaction with its surroundings continue to challenge 
patients, clinicians, and researchers alike. One of its deadliest forms appears in the lungs, 
leading to the most cancer-related mortalities worldwide1. Lung cancer is also the second 
most commonly diagnosed cancer in both men and women2 with non-small cell lung 
cancer (NSCLC) comprising 85% of cases3. The ability to accurately categorize NSCLC 
patients into groups structured around clinical factors represents a crucial step in cancer 
care. This stratification allows for evaluating tumor progression, establishing prognosis, 
providing standard terminologies for effective clinical communication, and most 
importantly identifying appropriate treatment plans from chemotherapy and surgery 
to radiation and targeted therapy. In addition to clinical factors including performance 
status, and to a lesser extent, age and gender4, tumor stage — as evaluated through the 
predominant tumor node metastasis (TNM) staging manual — is often regarded as a 
universal benchmark for performing such classification5. 

The TNM staging manual represents a body of knowledge combining evidence-based 
findings from clinical studies with empirical knowledge from site-specific experts6. 
However, we find that patients within the same stage can exhibit wide variations 
in their response to treatment7. This owes, in part, to the inevitable gap that exists 
between yesterday’s statistics and today’s more advanced treatment options, as well 
as the practical challenges of stratifying patients into groups that fit historical data, 
while balancing the ability of clinicians to identify the stratification features and apply 
the stratification algorithm at the point of care8. The limitations in our clinical gold 
standards, combined with our improved understanding of intra-tumor heterogeneity9, 
both signal the need for developing personalized biomarkers that can operate at the 
individual patient- as opposed to the population-level — eventually leading to more 
robust patient stratification and building a foundation for precision oncology practices.

The aforementioned clinician-driven stratification algorithms used in NSCLC staging 
rely on high-level semantic features describing tumor extent, location, and metastatic 
status. These are often inferred from standard medical images of the upper abdomen 
and thorax. These non-invasive images, however, offer information that goes beyond 
that captured through routine radiographic evaluation. Hardware advances in high-
resolution image acquisition equipment and computational processing power, coupled 
with novel artificial intelligence (AI) algorithms and large amounts of data, have all 
contributed to a proliferation of AI applications in radiology, medicine, and beyond. 
These have enabled the high-throughput extraction, and subsequent processing, of high-
dimensional quantitative features from images. More specifically, this dialogue between 
AI and medical imaging has been recently manifested in radiomics.

Radiomics is a data-centric field involving the extraction and mining of quantitative 
features as a means to quantify the solid tumor radiographic phenotype10. It hypothesizes 
that radiographic phenotypes represent underlying pathophysiologies and are thus 
capable of discriminating between disease forms for predicting prognosis and therapeutic 
response11. Radiomics research has primarily relied on explicitly programmed algorithms 



Chapter 5

114

that extract engineered (hand-crafted) imaging features. Such features commonly 
represent tumor shape, voxel intensity information (statistics), and patterns (textures). 
More specifically within oncology, Radiomics has demonstrated success in stratifying 
tumor histology12, tumor grades13, and clinical outcomes10. Additionally, associations 
with underlying gene expression patterns have also been reported14. Given these 
associations, radiomic features have been used to build prognostic and predictive models 
making use of statistical machine learning algorithms coupled with feature selection 
strategies15. More recent work, however, has shifted towards deep learning as the de facto 
machine learning approach16. 

Deep learning has shown great promise in areas that rely on imaging data including 
radiology17, pathology18, dermatology19, and ophthalmology20 to name a few. In lieu 
of the often subjective visual assessment of images by trained clinicians, deep learning 
automatically identifies complex patterns in data and hence provides evaluations in a 
quantitative manner. Compared to feature engineering approaches, crafting and selecting 
the most robust features is inherent to deep learning networks and thus they require little 
to no human input. Deep learning methods have outperformed their engineered feature 
counterparts in many tasks including mammographic lesion detection21, mortality 
prediction22, and multimodal image registration23. 

Convolutional neural networks (CNN) are a class of deep learning models that combines 
imaging filters with artificial neural networks through a series of successive linear and 
nonlinear layers. CNN layers learn increasingly higher level features from images, 
eventually making predictions, essentially mapping image inputs to desired outputs. 
CNN’s have demonstrated great potential in various classification24, detection25, 
segmentation26, registration27, and reconstruction28 tasks - learning from photographic, 
pathology, and radiographic images17. Other efforts use pretrained networks on images 
from other domains, an approach known as transfer learning29, as a workaround when 
sample size is perceived to be insufficient. In some instances, classifiers are built using 
a combination of deep learning and engineered features30. However, and with a few 
exceptions, most studies lack generalization power due to insufficient data - usually 
under 100 patients. With limited data and to avoid overfitting, most efforts have been 
confined to solving 2D problems or alternatively a 3D problem space is often treated 
as a composition of 2D orthogonal planes31, with a few recent studies capitalizing on 
information within the entire 3D tumor volume32. No studies to date have explored 
medical-to-medical transfer learning, with learned representations usually being 
transferred from general imagery. Only a few studies have assessed the stability of 
deep learning features extracted from medical images, with most solely relying on the 
presumed robustness of CNN’s in other application areas.

In this study, we investigated the ability of deep learning networks, 3D CNN’s in 
particular, to quantify radiographic tumor characteristics and predict overall survival 
likelihood. We designed a rigorous analytical setup (Figure 1), with seven large and 
independent datasets of 1194 NSCLC patients imaged with computed tomography 
(CT) across five institutions, to discover and validate the prognostic power of CNN’s 
in patients treated with radiotherapy and surgery. The prognosis is formulated as a 
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binary two-year overall survival classification problem. We benchmarked the CNN’s 
performance against models built on clinical parameters and engineered features, as well 
as demonstrated its stability in both test-retest and inter-reader variability scenarios. To 
gain a better understanding of the characteristics captured by CNN’s, we maped salient 
regions in images as per their contributions to predictions, both within and beyond the 
tumor. Additionally, we aimed at assessing the driving biological pathways as a means 
to explore the biological basis of the captured phenotypes. Our results highlight the 
improved performance of deep learning networks over their engineered counterparts, 
their robustness against specific types of input variability, their perceived biological 
basis, and their ultimate potential in improving patient stratification.
 robustness against specific types of input variability, their perceived biological basis, and their 
 ultimate potential in improving patient stratification. 

 Figure 1:  General design of the analytical setup.  A 3D convolutional neural network is trained 
 end-to-end on the radiotherapy dataset group. This is followed by a transfer learning approach 
 where the same network is fine-tuned on the surgery dataset group. The training, tuning, and 
 testing of these networks are all carried out on independent datasets as illustrated. Four further 
 experiments are carried out on the networks in order to benchmark their performance against 
 random forest models, assess their stability, identify regions in images responsible for 
 predictions, and finally explore their biological basis. Number of patients outside parentheses 
 refer to patients with  survival  follow-up per dataset.  Numbers within parentheses refer to 
 patients with 2 year overall  survival  follow-up only.  Refer to  Methods  for patient censoring 
 information and  S1 Table  for further dataset breakdown  and information. 

 METHODS 

 Datasets.  We utilized seven independent datasets in  this study  (S1 Table; S1 Text)  - divided 
 into radiotherapy and surgery dataset groups, in addition to a stability assessment dataset. They 
 come from a combination of European and US institutions as well as open-access online 
 repositories. 

 Radiotherapy dataset group 
 ●  HarvardRT  (training) consists of 317 NSCLC stages  I–IIIb patients imaged with CT, with 

 or without intravenous contrast, and treated with radiation therapy at the Dana-Farber 
 Cancer Institute and Brigham and Women's Hospital, Boston, USA. Images were 
 acquired between 2001 and 2015. 
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Figure 1. General design of the analytical setup. A 3D convolutional neural network is trained end-to-end on the 
radiotherapy dataset group. This is followed by a transfer learning approach where the same network is fine-tuned on the 
surgery dataset group. The training, tuning, and testing of these networks are all carried out on independent datasets as 
illustrated. Four further experiments are carried out on the networks in order to benchmark their performance against 
random forest models, assess their stability, identify regions in images responsible for predictions, and finally explore their 
biological basis. Number of patients outside parentheses refer to patients with survival follow-up per dataset. Numbers 
within parentheses refer to patients with 2 year overall survival follow-up only. Refer to Methods for patient censoring 
information and S1 Table for further dataset breakdown and information.
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Methods

Datasets. We utilized seven independent datasets in this study (S1 Table; S1 Text) 
- divided into radiotherapy and surgery dataset groups, in addition to a stability 
assessment dataset. They come from a combination of European and US institutions as 
well as open-access online repositories. 

Radiotherapy dataset group

• HarvardRT (training) consists of 317 NSCLC stages I–IIIb patients imaged with 
CT, with or without intravenous contrast, and treated with radiation therapy at 
the Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Boston, 
USA. Images were acquired between 2001 and 2015.

• Radboud (tuning) consists of 147 NSCLC stages I–IIIb patients imaged with 
contrast enhanced CT and treated with radiation therapy at Radboud University 
Nijmegen Medical Centre, The Netherlands. Images were acquired between 
February 2004 and October 2011.

• Maastro (testing) consists of 307 NSCLC stages I–IIIb patients, imaged with 
CT, with or without intravenous contrast, and treated with radiation therapy at 
MAASTRO Clinic, The Netherlands. Images were acquired between 2004 and 
2010. This dataset is available at https://wiki.cancerimagingarchive.net/display/
Public/NSCLC-Radiomics

Surgical dataset group

• Moffitt (training) consists of 200 NSCLC stages I–IIIb patients imaged 
primarily (89%) with contrast-enhanced CT and treated with surgical dissection 
at the Thoracic Oncology Program at the H. Lee Moffitt Cancer Center, Tampa, 
Florida, USA. Images were acquired between 2006 and 2009.

• MUMC (tuning) consists of 90 NSCLC stages I–IIIb patients, imaged with 
CT, with or without intravenous contrast, and treated with surgical dissection at 
MAASTRO Clinic, The Netherlands. Images were acquired between 2004 and 
2010. This dataset is available at https://wiki.cancerimagingarchive.net/display/
Public/NSCLC-Radiomics-Genomics

• M-SPORE (testing) consists of 101 NSCLC stages I–IIIb patients imaged 
with contrast-enhanced CT and treated with surgical dissection at the Thoracic 
Oncology Program at the H. Lee Moffitt Cancer Center, Tampa, Florida, USA. 
Images were acquired between 2006 and 2009. 
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Stability test dataset

• RIDER consists of 32 patients with NSCLC, each of whom 
underwent two CT scans of the chest within 15 minutes33. Images 
were acquired between January 2007 and September 2007. This dataset 
is available at https://wiki.cancerimagingarchive.net/display/Public/
RIDER+Collections;jsessionid=C78203F71E49C7EA3A43E0D213CE5555

Overall survival times were calculated from the start of respective treatment for the 
radiotherapy and surgery datasets. These continuous survival times were dichotomized 
using a two-year cutoff. Datasets were then right-censored; alive patients at a last known 
follow-up of less than two years were excluded. This setup allows for a binary two-
year survival endpoint of 0 for deceased patients and 1 for alive patients - relative to 
the two-year cutoff. To ensure non-bias dataset assignments of training, tuning, and 
testing, datasets with the most and least patients were assigned as training and tuning 
respectively. The remaining dataset was locked for testing. This assignment system was 
applied to both the radiotherapy and surgery dataset groups. Initial experiments were 
done on the radiotherapy datasets as they contained the most data, followed by transfer 
learning and fine tuning on the surgery datasets. This design also allows for averting 
noise as a result of large variability in tumor sizes between the two dataset groups, with 
the surgery group comprising consistently smaller tumors on average. All patients were 
utilized as per the survival data available without introducing artificial temporal cutoffs.

Data preprocessing. Tumors were manually contoured and approved by an expert 
reader (S1 Text). With slice thickness exceeding in-plane resolution, all datasets were 
resampled into isotropic voxels of unit dimension to ensure comparability where 1 voxel 
corresponds to 1mm3. This is achieved using linear and nearest neighbor interpolations 
for the image and annotations respectively. If multiple disconnected annotation masks 
were found, the largest by volume was chosen.

Data preprocessing for deep learning. Given full 3D tumor segmentations, both the 
center of mass (COM) and bounding box of the tumor annotations were calculated. 
3D isotropic patches of size 50x50x50 were extracted around each COM capturing 
around 60% of the tumor bounding boxes’ dimensions in the radiotherapy training 
dataset (S1 Figure). The patches were then normalized to a 0-1 range using lower and 
upper Hounsfield units bounds of -1024 and 3071 respectively. An augmentation factor 
of 32k was applied to the patches yielding a training size of ~9.4M and ~5.9M for the 
radiotherapy and surgery datasets respectively. This included random translations ±10 
pixels in all 3 axes, random rotation at 90° intervals along the longitudinal axes only, and 
random flipping along all 3 axes. Augmentation was done in real-time during training. 
No tuning- or testing-time augmentation has been applied.

Deep learning. We employed a 3D convolutional neural network (CNN) architecture 
(Figure 2). The network comprises a total of 4 3D convolutional layers of 64, 128, 256, 
and 512 filters with kernel sizes of 5x5x5, 3x3x3, 3x3x3, and 3x3x3 respectively. 2 max 
pooling layers of kernel size 3x3x3 were applied after the 2nd and 4th convolutional 
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layers. A series of four fully-connected layers - with sizes 13824, 512, 256, and 2 - 
provide high level reasoning before the prediction probabilities were calculated in the 
final softmax classifier layer. Training details as follows: We used the gradient-based 
stochastic optimizer Adam34 with a global learning rate of 1x10-03 without decay, a batch 
size of 16, dropout35 of 25% and 50% on the convolutional and fully connected layers 
respectively, and a L2 regularization36 penalty term of 1x10-05. To avoid the internal 
covariance shift problem37, batch normalization was applied across all layers with the 
input layer as an exception. Leaky rectified linear units ReLU38 with alpha=0.1 was 
the activation function of choice across the entire network prior to the final softmax 
activation. In training the CNN within the radiotherapy dataset, we used a random grid 
search exploring different hyper parameters including input patch size, batch size, learning 
rate, regularization term, and convolution kernel sizes. As for the general architecture, 
we started with a shallow network where underfitting occurs and incrementally added 
layers. The model was optimized on the tuning dataset using early stopping39. With a 1k 
epoch limit, the model with the best performance on the tuning dataset was chosen. In 
applying transfer learning on the surgery training dataset, the number of final layers to 
fine-tune was explored. The optimal setting included fine-tuning the final classification 
layer only, while keeping earlier layers fixed. With much fewer parameters to train, the 
learning rate and batch size were increased to 1x10-02 and 24 respectively. Google’s deep 
learning framework TensorFlow40 was used to train, tune, and test the CNN.

 Figure 2:  Illustration of the convolutional neural  network. This network was used to predict 
 overall two-year survival of NSCLC patients. The final classifier layer outputs normalized 
 probabilities for both classes (0=deceased and 1=alive). Only the weights of the final fully 
 connected layer were fine-tuned during transfer learning. The final convolutional layer (conv4) 
 was used for activation mapping. 

 Data preprocessing for engineered feature extraction.  Image intensity was binned by 25 HU 
 to increase pattern sensitivity. Preprocessing filters were applied prior to feature extraction in 
 order to reveal underlying information. Those included Laplacian of Gaussian, Wavelet, Square, 
 Exponential, Square, Square Root, and Logarithm filters. 

 Engineered feature extraction and selection  . Engineered  features were computed using 
 PyRadiomics  41  , an open-source radiomics package. Feature  stability was quantified using 
 Intraclass Correlation (ICC) using the irr package  42  ,  and the test-retest RIDER dataset  33,43  . 
 Features with an ICC>0.8 were regarded as highly robust and selected for the study. 
 Supervised selection was done using the mRMR method (minimum redundancy maximum 
 relevance) with the mRMRe package  44  . The mRMR was  applied on the tuning datasets to select 
 the top 40 engineered features with the highest mRMR ranks. Those features were then used 
 for the final model on the training and testing datasets. 

 Machine learning on clinical parameters and engineered features.  A random forest 
 classifier was built using clinical parameters and engineered features. The tuning process 
 involved a nested cross-validation technique (5 k-folds, 5 times) using the caret package  45  on 
 the training dataset to select the best parameters such as the number of variables randomly 
 sampled. The predictive power was measured on the testing dataset using the Area Under 
 receiver operating characteristic Curve (AUC). Significance over random permutation was done 
 using two-sided Wilcoxon rank-sum test between the score of the two classes. 

 Benchmarking.  Benchmarking of deep learning networks  against other models was done using 
 a permutation test. AUC difference is defined as a Δ.  For N permutations (N=1000 in our case), 
 new models were built after randomly permuting class labels and new AUC's were computed 
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Figure 2. Illustration of the convolutional neural network. This network was used to predict overall two-year survival 
of NSCLC patients. The final classifier layer outputs normalized probabilities for both classes (0=deceased and 1=alive). 
Only the weights of the final fully connected layer were fine-tuned during transfer learning. The final convolutional layer 
(conv4) was used for activation mapping.

Data preprocessing for engineered feature extraction. Image intensity was binned 
by 25 HU to increase pattern sensitivity. Preprocessing filters were applied prior to 
feature extraction in order to reveal underlying information. Those included Laplacian 
of Gaussian, Wavelet, Square, Exponential, Square, Square Root, and Logarithm filters. 

Engineered feature extraction and selection. Engineered features were computed 
using PyRadiomics41, an open-source radiomics package. Feature stability was quantified 
using Intraclass Correlation (ICC) using the irr package42, and the test-retest RIDER 
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dataset33,43. Features with an ICC>0.8 were regarded as highly robust and selected for the 
study. Supervised selection was done using the mRMR method (minimum redundancy 
maximum relevance) with the mRMRe package44. The mRMR was applied on the 
tuning datasets to select the top 40 engineered features with the highest mRMR ranks. 
Those features were then used for the final model on the training and testing datasets.

Machine learning on clinical parameters and engineered features. A random forest 
classifier was built using clinical parameters and engineered features. The tuning process 
involved a nested cross-validation technique (5 k-folds, 5 times) using the caret package45 
on the training dataset to select the best parameters such as the number of variables 
randomly sampled. The predictive power was measured on the testing dataset using the 
Area Under receiver operating characteristic Curve (AUC). Significance over random 
permutation was done using two-sided Wilcoxon rank-sum test between the score of 
the two classes.

Benchmarking. Benchmarking of deep learning networks against other models was 
done using a permutation test. AUC difference is defined as a Δ. For N permutations 
(N=1000 in our case), new models were built after randomly permuting class labels and 
new AUC’s were computed from their respective scores. The new difference Δi was then 
converted to 0 if below Δ or 1 if above. Finally, the p-value was defined as:

 from their respective scores. The new difference Δi was then converted to 0 if below Δ or 1 if 
 above. Finally, the p-value was defined as: 

 𝑝𝑝    =  1 
 𝑁𝑁    

 𝑖𝑖 

 𝑁𝑁 

∑ ∆ 𝑖𝑖 ;

 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒    ∆ 𝑖𝑖 =  0     𝑖𝑖𝑓𝑓    ∆ 𝑖𝑖    < ∆   ,    ∆ 𝑖𝑖 =  1     𝑖𝑖𝑓𝑓    ∆ 𝑖𝑖    > ∆

 If the AUC difference between those two random models was higher than the true value, then 
 the true class label was randomly permuted. A new model was then built and its score 
 distribution was compared to the true distribution. Finally, a meta p-value was computed to 
 compare the trend between the radiotherapy and surgery datasets (e.g. deep learning vs 
 random forest models across two datasets) using the survcomp package  46  . 

 Activation mapping  . To generate activation maps,  we  used a gradient-weighted activation 
 mapping method  47,48  to map important regions in an  input image with respect to predictions 
 made. The final convolutional layer (Conv4 in  Figure  2  ) was set as the penultimate layer where 
 the activation heatmaps (gradients) were generated during backpropagation. The heat maps 
 were then thresholded at 0, normalized and enlarged to match the input image size. The 
 heatmaps indicate regions in the input image contributing the most impact on the final prediction 
 layer. 

 Masking experiment  . Ground truth tumor annotations  were used to delineate tumor areas and 
 all voxels beyond the annotations were given the value of air (-1000 HU). The deep learning 
 network was retained with the masked data while keeping all hyper parameters locked. 

 Genomic studies.  We performed a pre-ranked Gene Set  Enrichment Analysis (GSEA) as in 
 previously published studies  14,49,50  . Briefly, more  than 60,000 probes measured global gene 
 expression on custom Affymetrix 2.0 microarray chipsets (HuRSTA_2a520709.CDF, GEO 
 accession number GPL15048). Measured expression was normalized according to the robust 
 multi-array average method  51  . These values were correlated  with the network predictions to 
 create a rank of all genes using Spearman rank correlation coefficient. This gene rank was input 
 to a pre-ranked version of GSEA  52  . GSEA calculates  scores that quantify the association of a 
 given rank of genes with a pre-defined list of gene sets representing biological pathways. In 
 such manner, GSEA allows for understanding what biological types of pathways the rank of 
 genes corresponds to. As gene sets, we tested expert-curated pathways from the C2 Reactome 
 collection version 6 available at MSigDB  53  using the  GSEA version 3 with 1,000 permutations. 
 Gene sets were restricted to sizes between 5 and 500, resulting in 669 tested gene sets. 
 Expression data are publically available here  https://elifesciences.org/articles/23421  & 
 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58661  .  We used GSEA’s Normalized 
 Enrichment Scores (NES) to quantify the association of the rank of genes with pathways and 
 validated the NES with the false-discovery-rate (FDR) as per  54  to correct for multiple hypothesis 
 testing. 
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If the AUC difference between those two random models was higher than the true 
value, then the true class label was randomly permuted. A new model was then built 
and its score distribution was compared to the true distribution. Finally, a meta p-value 
was computed to compare the trend between the radiotherapy and surgery datasets 
(e.g. deep learning vs random forest models across two datasets) using the survcomp 
package46.

Activation mapping. To generate activation maps, we used a gradient-weighted 
activation mapping method47,48 to map important regions in an input image with 
respect to predictions made. The final convolutional layer (Conv4 in Figure 2) was 
set as the penultimate layer where the activation heatmaps (gradients) were generated 
during backpropagation. The heat maps were then thresholded at 0, normalized and 
enlarged to match the input image size. The heatmaps indicate regions in the input 
image contributing the most impact on the final prediction layer.

Masking experiment. Ground truth tumor annotations were used to delineate tumor 
areas and all voxels beyond the annotations were given the value of air (-1000 HU). 
The deep learning network was retained with the masked data while keeping all hyper 
parameters locked.
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Genomic studies. We performed a pre-ranked Gene Set Enrichment Analysis (GSEA) as 
in previously published studies14,49,50. Briefly, more than 60,000 probes measured global 
gene expression on custom Affymetrix 2.0 microarray chipsets (HuRSTA_2a520709.
CDF, GEO accession number GPL15048). Measured expression was normalized 
according to the robust multi-array average method51. These values were correlated 
with the network predictions to create a rank of all genes using Spearman rank 
correlation coefficient. This gene rank was input to a pre-ranked version of GSEA52. 
GSEA calculates scores that quantify the association of a given rank of genes with a pre-
defined list of gene sets representing biological pathways. In such manner, GSEA allows 
for understanding what biological types of pathways the rank of genes corresponds 
to. As gene sets, we tested expert-curated pathways from the C2 Reactome collection 
version 6 available at MSigDB53 using the GSEA version 3 with 1,000 permutations. 
Gene sets were restricted to sizes between 5 and 500, resulting in 669 tested gene sets. 
Expression data are publically available here https://elifesciences.org/articles/23421 & 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58661. We used GSEA’s 
Normalized Enrichment Scores (NES) to quantify the association of the rank of genes 
with pathways and validated the NES with the false-discovery-rate (FDR) as per54 to 
correct for multiple hypothesis testing.

Results

Tumor characterization using 3D deep learning networks. In assessing the ability 
of deep learning networks to quantify radiographic characteristics of tumors, we 
performed an integrative analysis on seven independent datasets totaling 1194 patients 
(Figure 1; S1 Table). We identified and independently validated prognostic signatures 
using CNN’s for patients treated with radiotherapy (n=771, including 608 with two-
year survival follow-up). We then employed a transfer learning approach to achieve 
the same for surgery patients (n=391, including 368 with two-year survival follow-up). 
The architecture of the network (Figure 2) was designed to receive 3D input cubes 
surrounding the center of the primary tumor - based on clinician-located seed points. 
The network was trained to predict overall survival likelihood, two years after the start 
of the respective treatments.

Starting with the radiotherapy patients, the analysis was split into a discovery phase 
and an independent test phase (Figure 1; S1 Table). Within the discovery phase, a 
3D CNN was trained on the HarvardRT dataset (age median=69.6 (32.52 - 93.3), 
male/female=140/153, survival median=2.18 (0.0 - 11.68), 2-yr survival deceased/
alive=134/159) using augmentation, while the independent Radboud dataset (age 
median=65.9 (44.38 - 85.93), male/female=n/a, survival median=0.9 (0.1 - 8.18), 2-yr 
survival deceased/alive=76/28) was used to iteratively tune and optimize the CNN’s 
hyper parameters as well as the tumor 3D input patch sizes (S1 Figure; Methods) until 
the best prediction score was achieved. Beyond this discovery phase, the prognostic 
CNN was locked and tested on the independent Maastro dataset (age median=69 (34.0 
- 91.7), male/female=142/69, survival median=1.04 (0.03 - 5.8), 2-yr survival deceased/
alive=151/60). The CNN network showed a significant prognostic power in predicting 
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two-year survival (AUC=0.70 (0.63 - 0.78), p=1.13x10-07) (Figure 3A). Kaplan-Meier 
curve analysis was performed to evaluate the CNN’s performance in stratifying low and 
high mortality risk groups. A significant survival difference (p=0.0001) was observed 
between the two groups on the independent Maastro dataset (Figure 3B).

In order to develop a prognostic deep learning network for surgical patients, we employed 
a transfer learning approach (Figure 1; S1 Table). The final prediction layers of the 
radiotherapy-trained CNN were fine-tuned on the Moffitt dataset (age median=n/a, 
male/female=83/100, survival median=2.83 (0.0 - 6.33), 2-yr survival deceased/
alive=50/133) using augmentation (Figure 2; Methods). The independent MUMC 
dataset (age median=68 (37.2 - 83.33), male/female=61/27, survival median=3.26 (0.24 
- 8.78), 2-yr survival deceased/alive=24/64) was used to iteratively tune and optimize 
the CNN’s hyper parameters as well as identify the optimum layers for fine-tuning. 
The CNN was then locked and tested on the independent test dataset M-SPORE 
(age median=70 (46.0 - 88.0), male/female=44/53, survival median=4.5 (0.33 - 7.83), 
2-yr survival deceased/alive=17/80), where it demonstrated a significant prognostic 
performance (AUC=0.71 (0.60 - 0.82), p=3.02x10-04) (Figure 3C). Kaplan-Meier curve 
analysis showed significant survival difference (p=0.03) between low and high mortality 
risk groups within the M-SPORE test dataset (Figure 3D).

Benchmarking against clinical parameters and engineered imaging features. The 
deep learning networks were benchmarked against random forest models based on 
clinical information (age, gender, and TNM stage). These clinical models achieved 
a performance of (AUC=0.55 (0.47 - 0.64), p=0.21) and (AUC=0.58 (0.39 - 0.77), 
p=0.4) for the radiotherapy and surgery datasets respectively. Additionally, univariate 
analysis suggested that these demographic and clinical variables did not have a significant 
association with survival (S2 Table). Deep learning performed significantly better for 
both treatment types (S2 Figure). 



Chapter 5

122

 Figure 3:  Prognostic power (AUC) and Kaplan-Meier  (KM) curves of deep learning features for 
 both the radiotherapy and surgical networks.  (A)  AUC  plot for the radiotherapy test dataset 
 Maastro (n=211).  (B)  KM plot for the Maastro dataset  (n=307). Patients that have been 
 previously excluded for lack of 2 year  survival  follow-up  have been reincluded  (S1 Table)  . To 
 ensure an independent evaluation, the median split is calculated on the radiotherapy tuning 
 dataset Radboud (n=147) and locked for evaluation on the radiotherapy test dataset Maastro. 
 (C)  AUC plot for the surgery test dataset M-SPORE  (n=97).  (D)  KM plot for the M-SPORE 
 dataset (n=101). The median split is calculated on the surgery tuning dataset MUMC (n=90) and 
 locked for evaluation on the surgery test dataset M-SPORE. 
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(S1 Table). To ensure an independent evaluation, the median split is calculated on the radiotherapy tuning dataset 
Radboud (n=147) and locked for evaluation on the radiotherapy test dataset Maastro. (C) AUC plot for the surgery 
test dataset M-SPORE (n=97). (D) KM plot for the M-SPORE dataset (n=101). The median split is calculated on the 
surgery tuning dataset MUMC (n=90) and locked for evaluation on the surgery test dataset M-SPORE.

The deep learning networks were also compared to random forest models based on 
engineered features describing tumor shape, texture, and histogram. The engineered 
feature models demonstrated a prognostic performance of (AUC=0.66 (0.58 - 0.75), 
p=1.91x10-04) and (AUC=0.58 (0.44 - 0.75), p=0.275) for the radiotherapy and surgery 
datasets respectively (S2 Figure). Although the deep learning networks demonstrated 
improved performance over the engineered models for both patient groups, this difference 
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was not significant for radiotherapy patients (p=0.132; permutation test, N=1000), but 
was significant for surgery patients (p=0.035; permutation test, N=1000). These results 
were confirmed with a meta p-value test (p=0.06). 

Finally, the deep learning networks were compared to imaging parameters commonly 
used in clinical practice, namely tumor volume and maximum diameter. We found 
that tumor volume achieved a performance of (AUC=0.64 (0.56 - 0.73), p=6.18x10-04) 
and (AUC=0.51(0.37 - 0.66), p=0.85) for the radiotherapy and surgery datasets 
respectively. The deep learning networks were borderline non-significantly better on 
the radiotherapy dataset (p=0.056), and significantly better for the surgery datasets 
(p=0.004), as confirmed with a meta p-value test (p=7.60x10-05). Similar results were 
found for maximum diameter (S2 Figure).

Stability of deep learning networks. To evaluate the stability of the deep learning 
networks, we tested robustness against test-retest scenarios as well as variations in input 
seed annotations. We used the publicly available test-retest RIDER dataset comprising 
32 patients with lung cancer, each of whom underwent two chest CT scans within 15 
minutes by using the same imaging protocol and in a similar position33. Using this 
dataset, we evaluated the stability of network predictions between the test and retest 
scans. A high stability was demonstrated through the intraclass correlation coefficient 
(ICC) between both predictions (ICC=0.91). 

To assess stability against variations in input data, we randomly relocated the input seed 
points in 3D-space around the center of the tumor (S3 Figure). This randomly shifts 
the network inputs during testing and can be regarded as simulating multiple human 
readers annotating the tumor’s center with the inevitable variability among them. The 
network outputs show high correlation (Spearman’s Rank-Order Correlation=0.88). We 
also observed a high stability in prognostic predictions (AUC, μ=0.68, σ=0.014) (S3 
Figure).

Activation mapping of deep learning networks. To gain an understanding of regions 
within the CT images responsible for network predictions, we mapped the network’s 
activation maps over the final convolutional layer (Figure 4). The magnitudes of 
gradients flowing through this layer are used to decide on the “importance” of each 
node or voxel relative to the final prediction layer. This allowed us to highlight the 
most relevant regions with the most impact on predictions, both within and beyond 
the tumor. We observed that the network tended to fixate on the interface between the 
tumor and stroma (parenchyma or pleura). Most contributions to predictions came in 
the form of large uninterrupted areas of relatively higher CT density - spanning regions 
within and beyond the tumor. Areas with lower CT density, however, contributed the 
least to predictions. Examples of these include lobe areas with infrequent vessels or 
jagged interfaces between low and high CT density areas. We also observed that normal 
tissue, such as high density bone tissue, was disregarded - as it is likely to exist in most 
images and is thus non-informative. This visual mapping demonstrates that tissue within 
and beyond the tumor were both crucial for characterization and eventual prediction. 
In order to further validate these findings, we re-trained the deep learning network with 
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masked images - essentially discarding data beyond the tumor. A drop in prognostic 
power was observed (from AUC=0.70 to 0.63) (S4 Figure), hinting at the existence of 
discriminative texture features in tumor-surrounding regions.

 Figure 4:  Activation mapping. Visual highlights of  the most ‘important’ regions within the input 
 image - those with the most contributions to maximizing the outputs of the final prediction layer. 
 The rows represent four randomly selected samples. From the left, the first column represents 
 the central axial slice of the network input (150x150mm) with tumor annotations. In the second 
 column, a 50x50mm patch is cropped around the tumor. In the third column, activation contours 
 are overlaid with blue and red showing the lowest and highest contributions (gradients) 
 respectively. Column four represents the activation heatmaps for a better visual reference.  While 
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Figure 4. Activation mapping. Visual highlights of the most ‘important’ regions within the input image - those with the 
most contributions to maximizing the outputs of the final prediction layer. The rows represent four randomly selected 
samples. From the left, the first column represents the central axial slice of the network input (150x150mm) with tumor 
annotations. In the second column, a 50x50mm patch is cropped around the tumor. In the third column, activation 
contours are overlaid with blue and red showing the lowest and highest contributions (gradients) respectively. Column 
four represents the activation heatmaps for a better visual reference. While the heatmaps are 3 dimensional, only the 
central axial slice is shown. Therefore, the entire color spectrum might not be fully visualized.

Biological basis of deep learning networks. We also explored the biological basis of 
the radiographic phenotypes quantified by deep learning networks through investigating 
imaging and gene-expression assays on the surgery training dataset Moffitt (n=200). We 
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linked the CNN’s predictions to global gene expression patterns using a pre-ranked 
gene set enrichment analysis (GSEA). Notably, the majority of the most significantly 
enriched pathways (false-discovery-rate, FDR ≤ 10-3) are directly linked to cell cycle and 
transcriptional processes (Figure 5; S1 File). For example, meiotic synapsis, telomere 
packaging, and various cell cycle stages such as G1 and S were among the top associations. 
Notably, these enrichments were highly negative - thus suggesting that the network 
predictions show inverse correlation to a proliferating phenotype. These results were 
consistent when reproduced on the surgery tuning dataset MUMC (n=90) (S5 Figure; 
S2 File), where cell cycle and proliferation pathways, as well as various transcriptional 
processes were observed among the most significant associations.

 Figure 5:  Global gene set expression patterns - Moffitt  dataset. The deep learning network 
 predictions on the surgery training dataset Moffitt were linked to global gene expression patterns 
 using a pre-ranked gene set enrichment analysis (GSEA). Negative and positive enrichments 
 are shown in red and blue respectively. The top ten enrichments in each category are 
 highlighted. See  (S1 File)  for full ranking and associated  enrichment scores. 
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Figure 5. Global gene set expression patterns - Moffitt dataset. The deep learning network predictions on the surgery 
training dataset Moffitt were linked to global gene expression patterns using a pre-ranked gene set enrichment analysis 
(GSEA). Negative and positive enrichments are shown in red and blue respectively. The top ten enrichments in each 
category are highlighted. See (S1 File) for full ranking and associated enrichment scores.
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Discussion

In this study, we assessed the utility of deep learning networks in predicting two-year 
overall survival of NSCLC patients from CT data. We trained a 3D CNN end-to-end 
on patients treated with radiotherapy, and employed a transfer learning approach for 
those treated with surgery. We demonstrated CNN’s ability in significantly stratifying 
patients into low and high mortality risk groups, as well as their stability in test-retest 
and inter-reader variability scenarios. In addition to benchmarking against feature 
engineering methods, we also highlighted regions with the largest contributions to the 
captured prognostic signatures, both within and beyond the tumor volume. Finally, our 
preliminary genomic association studies suggested correlations between deep learning 
features and cell cycle and transcriptional processes.

This effort builds upon a body of deep learning applications in medical imaging 
that has emerged since the unprecedented superior performance of CNN’s in recent 
image classification competitions55. Few deep learning studies to date have explored 
prognostication, with most addressing other tasks including segmentation, detection, 
and malignancy classification17. While feature definition is automated in these deep 
learning approaches, radiomics has primarily relied on the extraction, selection, and 
subsequent classification of predefined features using other machine learning methods 
including shallow neural networks, random forests, and support vector machines 
among others15. These methods have found applications in the prognostication of 
nasopharyngeal carcinoma in MRI56, pulmonary adenocarcinoma in CT57, and early-
stage NSCLC in PET/CT58 to name a few. Consequently, in this study, we benchmarked 
the deep learning networks against random forest models built on engineered features, 
with performance being within previously observed ranges10. These models exhibited 
an inferior performance when compared to the deep learning networks; although this 
difference was only significant for surgery patients. These results may be attributed to 
the higher levels of abstraction inherent in deep learning features over their engineered 
counterparts. Additionally, and in terms of input formats, engineered features were 
extracted exclusively from within tumor annotations. Deep learning inputs, however, 
were comprised of 3D cubes allowing the network to consider tumor-surrounding 
tissue. This effect is magnified in the smaller tumors treated with surgery relative to their 
larger radiotherapy counterparts, potentially explaining the significance of the surgery 
results. Surgery patients are often excluded from engineered radiomics studies59–61 
where no prognostic signal has been detected, citing as reasoning the lack of rationale 
in predicting a tumor response based on its phenotype if it is resected. This hints at the 
potential utility of deep learning networks in stratifying this specific patient group. 

We also explored models built on a set of clinical features, including age, gender, and 
TNM stage. These models performed poorly in both the radiotherapy and surgery 
datasets, potentially attributed to the limited features available and common to all six 
datasets. Imaging features commonly used in the clinic, namely tumor volume and 
max diameter, performed relatively well on the radiotherapy datasets, but rather poorly 
on the surgery datasets which had previously been demonstrated62. Both models were 
outperformed by deep learning networks; although, this difference was only significant 
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for the surgery datasets. Further studies are needed to investigate the prognostic 
relationship between these features and deep learning features for radiotherapy patients, 
especially given the well established relationship between tumor volume and survival 
in this group63. These results also hints at the prognostic superiority of deep learning 
features for surgery patients.

Our efforts in identifying salient regions within images through activation mapping hint 
at the significance of tumor-surrounding tissue in patient stratification. This aligns with 
efforts that showcase the prognostic value of tumor location64 as well as the importance 
of understanding the interactions between tumors and their surroundings as a means for 
effective cancer prevention and care65. 

Finally, our preliminary genomic association study showcases correlations between the 
deep learning network predictions and cell cycling, transcriptional, and other DNA-
replication processes, such as DNA repair or damage response. This suggests that deep 
learning features may be driven by underlying molecular processes mostly related to 
proliferation of cells and hence progression of tumors. Moreover, nearly all significantly 
enriched biological processes had a negative enrichment score, indicating an inverse 
relationship to the survival predictions. This suggests that the gene expression present 
in cell proliferating pathways tend to be downregulated with higher network scores 
indicating a higher survival probability. As associations between engineered imaging 
features and biological pathways have already been established14,66, our study extends 
these associations to deep learning.

Strengths of this study include the relatively large - in cancer imaging terms - set of 
1194 NSCLC patients with training, tuning, and testing on independent datasets. 
The datasets were heterogeneous in terms of imaging acquisition parameters, clinical 
stage, and management, thus reflecting clinical reality. This suggests that deep learning 
methods may eventually be sufficiently robust and generalizable for practical application 
to clinical care. In addition to being a non-invasive and cost effective routine medical 
test67,68, CT imaging provides a relatively stable radiodensity metric standardized across 
equipment vendors and imaging protocols compared to other imaging modalities (e.g. 
MRI or PET). In comparison to engineered radiomic methods that require slice-by-
slice tumor annotations, a time consuming and expensive process that is highly prone 
to inter-reader variability, our approach may yield higher throughput as it only requires 
a single-click seed point placement roughly within the center of the tumor volume. The 
two-year survival endpoint utilized here is a relevant survival cutoff for NSCLC patients 
and one that has been previously used in prognostication efforts69–71. Our study hints 
at the utility of transfer learning within medical imaging and across treatment types, a 
finding that is also strengthened through benchmarking against end-to-end training of 
the surgery test dataset (S6 Figure). 

Several limitations should also be noted. By design, the retrospective nature of this study 
hindered the ability to gauge how and where such a tool can potentially be integrated 
into the clinical workflow. Consequently, the prognostic knowledge distilled into the 
deep learning networks is based on earlier treatment options and protocols, and may not 
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be adequately positioned to infer a prognostic signature of a patient treated with more 
modern means. The opaqueness of deep learning networks is another limitation. Feature 
definition, extraction, and selection in these methods - a major source of variability 
in engineered radiomics15 - are all automated and occur implicitly. This comes at an 
expensive cost: interpretability. Consequently, these black box-like networks are very 
difficult to debug, isolate the reason behind certain outcomes, and predict when and 
where failures would happen. Without a strong theoretical backing72, deep learning 
features are nameless and the imaging characteristics they measure are highly obscure. 
This ambiguity is in sharp contrast to the expert-based well-defined engineered features, 
and is often exacerbated in prognostication problems where the only means to validation 
is long term mortality follow up through prospective studies. Additionally, a better 
understanding of the network hyperparameter space is needed, potentially provided 
by using multiple tuning datasets within the discovery phase and prior to the final 
test phase. Another limitation lies in the input data space. Despite the aforementioned 
dataset heterogeneity, CT stability, as well as the test/retest and inter-reader variability 
studies performed herein, the networks’ sensitivity to other variations in clinical 
parameters and image acquisition parameters including tube current, noise index levels, 
and reconstruction-specific parameters among others has not been explored. Finally, as 
survival times used in this study are overall as opposed to being cancer-specific, they may 
be influenced by external factors and introduce uncertainty into the problem.

Given the fixed input size of the deep learning networks used in this study, research 
implications include exploring classification network architectures that accept inputs 
of simultaneous multi-scale resolutions73 or variable sizes74 - an approach common to 
fully convolutional networks used in image segmentation. This can potentially allow 
for combining the large tumors in radiotherapy patients with their relatively smaller 
counterparts in surgery patients into one prognostic network whilst maintaining 
robustness against such variation. In terms of interpretability, training neural networks 
with disentangled hidden layer representations is an active area of research75. While our 
activation mapping studies offer a qualitative measure of network attention, a more 
quantitative visualization and diagnosis of network representations is needed, especially 
with applications in the medical space. Additionally, a safeguard against neural networks’ 
blind-spots is required in addressing our weak understanding of their susceptibility to 
adversarial attacks76, and more specifically the sensitivity of medical images to certain 
reported counter-intuitive properties of CNN’s77. Finally, recent advances in Imaging-
Genomics78 motivate further explorations beyond our preliminary GSEA study. When 
rigorously evaluated in future prospective studies, deep learning-based prognostic 
signatures could highlight the specific biological states of tumorigenesis exhibited by a 
given patient, and thus enable more targeted therapy applications that exploit specific 
biological traits.

The development of prognostic biomarkers for NSCLC patients is an active area of 
research where tumor staging information is augmented with radiographic, genetic, 
molecular, and protein-based evidence79,80. The lack of a truly prognostic clinical gold 
standard hinders the ability to accurately benchmark these biomarkers and further 
stresses the need for prospective validation. While TNM staging is often utilized in the 
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clinic as the primary means for NSCLC prognostication and treatment selection, it is 
mainly intended as a discrete measure of tumor extent and a clinical communication 
tool, in addition to being simple and static by design. Conversely, quantitative imaging 
features inferred through deep learning are continuous, high-dimensional, and may be 
used to augment the higher-level coarser stratification provided by TNM staging. After 
considering the aforementioned limitations, a prognostic imaging tool may allow the 
transition to a finer classification enabling the identification of appropriate treatment 
plans on the individual patient level. One potential application for such transition 
may be in managing early stage NSCLC patients, for whom surgery represents a 
therapeutic mainstay albeit having high recurrence risks7. Adjuvant chemotherapy is 
often administered as a means of reducing these risks81,82. While T- and N-stage are 
known to be associated with recurrence in these patients83, we find that patients with 
similar clinical characteristics can exhibit wide variations in incidence of recurrence84 
and survival85. A finer classification within the same stage may allow for identifying 
low and high mortality risk patients. Accordingly, low risk patients may be spared the 
adverse physical and mental effects as well as associated costs of adjuvant chemotherapy, 
and conversely more stringent post-treatment surveillance of those at high risk may be 
planned. Additionally, a more detailed stratification could potentially inform surgical 
approaches and techniques, empower high risk patients with the choice of adjuvant 
therapy modalities that best fit their desired lifestyles, as well as identify long term 
beneficiaries from such therapy86.

Deep learning algorithms that learn from experience offer access to unprecedented states 
of intelligence that, in some cases, match human intelligence. Beyond imaging, deep 
learning’s multimodal nature87 promises the integration of multiple parallel streams 
of information spanning genomics, pathology, electronic health records, social media, 
and many others, into powerful integrated diagnostic systems88. Despite numerous 
roadblocks including the need for standardized data collection methods, evaluation 
criteria, prospective validation, and reporting protocols89, the greatest anticipated clinical 
impact of these algorithms will be within precision medicine. This emerging approach 
allows for early diagnosis and customized patient-specific treatments thus delivering the 
appropriate medical care to the right patient at the right time90. While medical imaging 
has always provided an individual assessment of ailments, AI algorithms promise to 
accurately stratify patients based on imaging biomarkers and enable new research 
avenues for personalized healthcare.

Acknowledgements

Authors acknowledge financial support from the National Institute of Health (NIH-
USA U24CA194354, and NIH-USA U01CA190234); https://grants.nih.gov/funding/
index.htm. The funders had no role in study design, data collection and analysis, decision 
to publish, or preparation of the manuscript.



Chapter 5

130

Supporting Information

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.
pmed.1002711#sec030



Deep Learning for Lung Cancer Prognostication

131

Ch
ap

te
r 

5

References
1. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

2. American Cancer Society: Cancer Facts and Figures 2017. Atlanta, Ga: American Cancer 
Society, 2017. Am. Cancer Soc. 2014 https://www.cancer.org/content/dam/cancer-org/
research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2016/cancer-facts-
and-figures-2016.pdf.

3. Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung 
cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584–
594 (2008).

4. Sculier, J.-P. et al. The impact of additional prognostic factors on survival and their 
relationship with the anatomical extent of disease expressed by the 6th Edition of the 
TNM Classification of Malignant Tumors and the proposals for the 7th Edition. J. 
Thorac. Oncol. 3, 457–466 (2008).

5. Amin, M. B. et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to 
build a bridge from a population-based to a more ‘personalized’ approach to cancer 
staging. CA Cancer J. Clin. 67, 93–99 (2017).

6. Gospodarowicz, M. K. et al. The process for continuous improvement of the TNM 
classification. Cancer 100, 1–5 (2004).

7. Uramoto, H. & Tanaka, F. Recurrence after surgery in patients with NSCLC. Transl Lung 
Cancer Res 3, 242–249 (2014).

8. Mirsadraee, S., Oswal, D., Alizadeh, Y., Caulo, A. & van Beek, E., Jr. The 7th lung cancer 
TNM classification and staging system: Review of the changes and implications. World J. 
Radiol. 4, 128–134 (2012).

9. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences 
of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

10. Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a 
quantitative radiomics approach. Nat. Commun. 5, 4006 (2014).

11. Lambin, P. et al. Radiomics: extracting more information from medical images using 
advanced feature analysis. Eur. J. Cancer 48, 441–446 (2012).

12. Ganeshan, B. et al. Non–Small Cell Lung Cancer: Histopathologic Correlates for Texture 
Parameters at CT. Radiology 266, 326–336 (2013).

13. Ganeshan, B., Abaleke, S., Young, R. C. D., Chatwin, C. R. & Miles, K. A. Texture 
analysis of non-small cell lung cancer on unenhanced computed tomography: initial 
evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 
10, 137–143 (2010).

14. Grossmann, P. et al. Defining the biological basis of radiomic phenotypes in lung cancer. 
Elife 6, (2017).

15. Parmar, C., Grossmann, P., Bussink, J., Lambin, P. & Aerts, H. J. W. L. Machine Learning 
methods for Quantitative Radiomic Biomarkers. Sci. Rep. 5, 13087 (2015).

16. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial 
intelligence in radiology. Nat. Rev. Cancer (2018) doi:10.1038/s41568-018-0016-5.



Chapter 5

132

17. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 
42, 60–88 (2017).

18. Cruz-Roa, A. et al. Accurate and reproducible invasive breast cancer detection in whole-
slide images: A Deep Learning approach for quantifying tumor extent. Sci. Rep. 7, 46450 
(2017).

19. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural 
networks. Nature 542, 115–118 (2017).

20. Gulshan, V. et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA (2016) 
doi:10.1001/jama.2016.17216.

21. Kooi, T. et al. Large scale deep learning for computer aided detection of mammographic 
lesions. Med. Image Anal. 35, 303–312 (2017).

22. Carneiro, G., Oakden-Rayner, L., Bradley, A. P., Nascimento, J. & Palmer, L. Automated 
5-year mortality prediction using deep learning and radiomics features from chest 
computed tomography. in 2017 IEEE 14th International Symposium on Biomedical 
Imaging (ISBI 2017) 130–134 (2017).

23. Yang, X., Kwitt, R., Styner, M. & Niethammer, M. Quicksilver: Fast predictive image 
registration - A deep learning approach. Neuroimage 158, 378–396 (2017).

24. Pan, Y. et al. Brain tumor grading based on Neural Networks and Convolutional Neural 
Networks. in 2015 37th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC) 699–702 (2015).

25. Forsberg, D., Sjöblom, E. & Sunshine, J. L. Detection and Labeling of Vertebrae in 
MR Images Using Deep Learning with Clinical Annotations as Training Data. J. Digit. 
Imaging (2017) doi:10.1007/s10278-017-9945-x.

26. Ghafoorian, M. et al. Location Sensitive Deep Convolutional Neural Networks for 
Segmentation of White Matter Hyperintensities. Sci. Rep. 7, 5110 (2017).

27. Miao, S., Wang, Z. J. & Liao, R. A CNN Regression Approach for Real-Time 2D/3D 
Registration. IEEE Trans. Med. Imaging 35, 1352–1363 (2016).

28. Hammernik, K., Würfl, T., Pock, T. & Maier, A. A Deep Learning Architecture for 
Limited-Angle Computed Tomography Reconstruction. in Bildverarbeitung für die 
Medizin 2017 92–97 (Springer Berlin Heidelberg, 2017).

29. Pan, S. J. & Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 22, 
1345–1359 (2010).

30. Paul, R. et al. Deep Feature Transfer Learning in Combination with Traditional Features 
Predicts Survival Among Patients with Lung Adenocarcinoma. Tomography 2, 388–395 
(2016).

31. Zheng, Y., Liu, D., Georgescu, B., Nguyen, H. & Comaniciu, D. 3D Deep Learning 
for Efficient and Robust Landmark Detection in Volumetric Data. in Medical Image 
Computing and Computer-Assisted Intervention -- MICCAI 2015 565–572 (Springer, 
Cham, 2015).

32. Milletari, F., Navab, N. & Ahmadi, S. A. V-Net: Fully Convolutional Neural Networks 
for Volumetric Medical Image Segmentation. in 2016 Fourth International Conference on 
3D Vision (3DV) 565–571 (2016).



Deep Learning for Lung Cancer Prognostication

133

Ch
ap

te
r 

5

33. Zhao, B. et al. Evaluating Variability in Tumor Measurements from Same-day Repeat CT 
Scans of Patients with Non–Small Cell Lung Cancer. Radiology 252, 263–272 (2009).

34. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] 
(2014).

35. Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: 
a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–
1958 (2014).

36. Ng, A. Y. Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. in 
Proceedings of the Twenty-first International Conference on Machine Learning 78– (ACM, 
2004).

37. Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift. arXiv [cs.LG] (2015).

38. Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network 
acoustic models. in Proc. ICML vol. 30 (2013).

39. Prechelt, L. Early Stopping - But When? in Neural Networks: Tricks of the Trade (eds. Orr, 
G. B. & Müller, K.-R.) 55–69 (Springer Berlin Heidelberg, 1998).

40. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed 
Systems. arXiv [cs.DC] (2016).

41. van Griethuysen, J. J. M. et al. Computational Radiomics System to Decode the 
Radiographic Phenotype. Cancer Res. 77, e104–e107 (2017).

42. Gamer, M., Lemon, J., Fellows, I. & Singh, P. irr: Various coefficients of interrater 
reliability and agreement. R package version 0. 84 137, (2012).

43. Oxnard, G. R. et al. Variability of Lung Tumor Measurements on Repeat Computed 
Tomography Scans Taken Within 15 Minutes. J. Clin. Oncol. 29, 3114–3119 (2011).

44. De Jay, N. et al. mRMRe: an R package for parallelized mRMR ensemble feature selection. 
Bioinformatics 29, 2365–2368 (2013).

45. Kuhn, M. Building Predictive Models inRUsing thecaretPackage. J. Stat. Softw. 28, 
(2008).

46. Schröder, M. S., Culhane, A. C., Quackenbush, J. & Haibe-Kains, B. survcomp: an R/
Bioconductor package for performance assessment and comparison of survival models. 
Bioinformatics 27, 3206–3208 (2011).

47. Kotikalapudi, R. keras-vis. (Github).

48. Selvaraju, R. R. et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-
Based Localization. in 2017 IEEE International Conference on Computer Vision (ICCV) 
618–626 (2017).

49. Grossmann, P., Gutman, D. A., Dunn, W. D., Jr, Holder, C. A. & Aerts, H. J. W. L. 
Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype 
features in Glioblastoma. BMC Cancer 16, 611 (2016).

50. El-Hachem, N. et al. Characterization of Conserved Toxicogenomic Responses in 
Chemically Exposed Hepatocytes across Species and Platforms. Environ. Health Perspect. 
124, 313–320 (2016).



Chapter 5

134

51. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density 
oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

52. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–
15550 (2005).

53. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 
1739–1740 (2011).

54. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–
300 (1995).

55. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep 
Convolutional Neural Networks. in Advances in Neural Information Processing Systems 25 
(eds. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097–1105 (Curran 
Associates, Inc., 2012).

56. Zhang, B. et al. Radiomic machine-learning classifiers for prognostic biomarkers of 
advanced nasopharyngeal carcinoma. Cancer Lett. 403, 21–27 (2017).

57. Kim, H. et al. The prognostic value of CT radiomic features for patients with pulmonary 
adenocarcinoma treated with EGFR tyrosine kinase inhibitors. PLoS One 12, e0187500 
(2017).

58. Oikonomou, A. et al. Radiomics analysis at PET/CT contributes to prognosis of 
recurrence and survival in lung cancer treated with stereotactic body radiotherapy. Sci. 
Rep. 8, 4003 (2018).

59. Coroller, T. P. et al. CT-based radiomic signature predicts distant metastasis in lung 
adenocarcinoma. Radiother. Oncol. 114, 345–350 (2015).

60. Huynh, E. et al. CT-based radiomic analysis of stereotactic body radiation therapy 
patients with lung cancer. Radiother. Oncol. 120, 258–266 (2016).

61. Lao, J. et al. A Deep Learning-Based Radiomics Model for Prediction of Survival in 
Glioblastoma Multiforme. Sci. Rep. 7, 10353 (2017).

62. Coroller, T. P. et al. Radiomic phenotype features predict pathological response in non-
small cell lung cancer. Radiother. Oncol. 119, 480–486 (2016).

63. Zhang, J. et al. Relationship between tumor size and survival in non-small cell lung 
cancer (NSCLC): An analysis of the Surveillance, Epidemiology, and End Results (SEER) 
registry. J. Clin. Orthod. 30, 7047–7047 (2012).

64. Shien, K., Toyooka, S., Soh, J., Yamamoto, H. & Miyoshi, S. Is tumor location an 
independent prognostic factor in locally advanced non-small cell lung cancer treated with 
trimodality therapy? Journal of thoracic disease vol. 9 E489–E491 (2017).

65. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface 
with the entire organism. Dev. Cell 18, 884–901 (2010).

66. Ahrendt, S. A. et al. p53 mutations and survival in stage I non-small-cell lung cancer: 
results of a prospective study. J. Natl. Cancer Inst. 95, 961–970 (2003).

67. OECD. Computed tomography (CT) scanners. Health equipment (2015) doi:10.1787/
bedece12-en.



Deep Learning for Lung Cancer Prognostication

135

Ch
ap

te
r 

5

68. Statistics / Health care use / Computed tomography (CT) exams. doi:10.1787/3c994537-
en.

69. Oberije, C. et al. A prospective study comparing the predictions of doctors versus models 
for treatment outcome of lung cancer patients: a step toward individualized care and 
shared decision making. Radiother. Oncol. 112, 37–43 (2014).

70. Hoang, T., Xu, R., Schiller, J. H., Bonomi, P. & Johnson, D. H. Clinical model to predict 
survival in chemonaive patients with advanced non-small-cell lung cancer treated with 
third-generation chemotherapy regimens based on eastern cooperative oncology group 
data. J. Clin. Oncol. 23, 175–183 (2005).

71. Cistaro, A. et al. Prediction of 2 years-survival in patients with stage I and II non-small 
cell lung cancer utilizing 18F-FDG PET/CT SUV quantifica. Radiol. Oncol. 47, 219–
223 (2013).

72. Shwartz-Ziv, R. & Tishby, N. Opening the Black Box of Deep Neural Networks via 
Information. arXiv [cs.LG] (2017).

73. Ghafoorian, M. et al. Deep multi-scale location-aware 3D convolutional neural networks 
for automated detection of lacunes of presumed vascular origin. Neuroimage Clin 14, 
391–399 (2017).

74. Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic 
segmentation. in Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition 3431–3440 (2015).

75. Zhang, Q.-S. & Zhu, S.-C. Visual interpretability for deep learning: a survey. Frontiers of 
Information Technology & Electronic Engineering 19, 27–39 (2018).

76. Yuan, X., He, P., Zhu, Q. & Li, X. Adversarial Examples: Attacks and Defenses for Deep 
Learning. arXiv [cs.LG] (2017).

77. Finlayson, S. G., Chung, H. W., Kohane, I. S. & Beam, A. L. Adversarial Attacks Against 
Medical Deep Learning Systems. arXiv [cs.CR] (2018).

78. Bai, H. X. et al. Imaging genomics in cancer research: limitations and promises. Br. J. 
Radiol. 89, 20151030 (2016).

79. Burotto, M., Thomas, A., Subramaniam, D., Giaccone, G. & Rajan, A. Biomarkers in 
Early-Stage Non–Small-Cell Lung Cancer: Current Concepts and Future Directions. J. 
Thorac. Oncol. 9, 1609–1617 (2014).

80. Thakur, M. K. & Gadgeel, S. M. Predictive and Prognostic Biomarkers in Non-Small 
Cell Lung Cancer. Semin. Respir. Crit. Care Med. 37, 760–770 (2016).

81. Zappa, C. & Mousa, S. A. Non-small cell lung cancer: current treatment and future 
advances. Transl Lung Cancer Res 5, 288–300 (2016).

82. Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy In Non-Small Cell 
Lung Cancer: A Meta-Analysis Using Updated Data On Individual Patients From 52 
Randomised Clinical Trials. BMJ: British Medical Journal 311, 899–909 (1995).

83. Wang, X. et al. Prediction of recurrence in early stage non-small cell lung cancer using 
computer extracted nuclear features from digital H&E images. Sci. Rep. 7, 13543 (2017).

84. Pepek, J. M. et al. How well does the new lung cancer staging system predict for local/
regional recurrence after surgery?: A comparison of the TNM 6 and 7 systems. J. Thorac. 
Oncol. 6, 757–761 (2011).



Chapter 5

136

85. Wu, C.-F. et al. Recurrence Risk Factors Analysis for Stage I Non-small Cell Lung Cancer. 
Medicine 94, e1337 (2015).

86. Arriagada, R. et al. Long-term results of the international adjuvant lung cancer trial 
evaluating adjuvant Cisplatin-based chemotherapy in resected lung cancer. J. Clin. Oncol. 
28, 35–42 (2010).

87. Ngiam, J. et al. Multimodal deep learning. in Proceedings of the 28th international 
conference on machine learning (ICML-11) 689–696 (2011).

88. Lundström, C. F., Gilmore, H. L. & Ros, P. R. Integrated Diagnostics: The Computational 
Revolution Catalyzing Cross-disciplinary Practices in Radiology, Pathology, and 
Genomics. Radiology 285, 12–15 (2017).

89. Lambin, P. et al. Radiomics: the bridge between medical imaging and personalized 
medicine. Nat. Rev. Clin. Oncol. 14, 749–762 (2017).

90. European Society of Radiology. Medical imaging in personalised medicine: a white paper 
of the research committee of the European Society of Radiology (ESR). Insights Imaging 
2, 621–630 (2011).





6



6
Nature Scientific Reports 2021

TL Chaunzwa, A Hosny, Y Xu, A Shafer, N Diao, M Lanuti, DC Christiani, RH 
Mak & HJWL Aerts

Deep Learning-Based Computed 
Tomography Radiomics for Non-Small 

Cell Lung Cancer Histopathologic 
Classification

Chapter 6



Chapter 6

140

Abstract

Tumor histology is an important predictor of therapeutic response and outcomes in 
lung cancer. Tissue sampling for pathologist review is the most reliable method for 
histology classification, however, recent advances in deep learning for medical image 
analysis allude to the utility of radiologic data in further describing disease characteristics 
and for risk stratification. In this study, we propose a radiomics approach to predicting 
non-small cell lung cancer (NSCLC) tumor histology from non-invasive standard-of-
care computed tomography (CT) data. We trained and validated convolutional neural 
networks (CNNs) on a dataset comprising 311 early-stage NSCLC patients receiving 
surgical treatment at Massachusetts General Hospital (MGH), with a focus on the 
two most common histological types: adenocarcinoma (ADC) and Squamous Cell 
Carcinoma (SCC). The CNNs were able to predict tumor histology with an AUC of 
0.71(p = 0.018). We also found that using machine learning classifiers such as k-nearest 
neighbors (kNN) and support vector machine (SVM) on CNN-derived quantitative 
radiomics features yielded comparable discriminative performance, with AUC of up 
to 0.71 (p = 0.017). Our best performing CNN functioned as a robust probabilistic 
classifier in heterogeneous test sets, with qualitatively interpretable visual explanations 
to its predictions. Deep learning based radiomics can identify histological phenotypes in 
lung cancer. It has the potential to augment existing approaches and serve as a corrective 
aid for diagnosticians.
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Introduction

Lung cancer is the leading cause of cancer-related death1. It is a heterogeneous disease 
with many clinically important subtypes2. Among these, histologic phenotype is a 
particularly important predictor of response to therapy and overall clinical outcome1,2. 
More than 80% of all primary lung cancers are classified as non-small cell lung 
cancer (NSCLC) where the major histological types include adenocarcinoma (ADC), 
and squamous cell carcinoma (SCC); deriving from small and large airway epithelia 
respectively1,2. In routine clinical practice, manual tissue assessment using conventional 
light microscopy is the gold standard and most widely used approach for histological 
categorization. However, this relies on complex invasive techniques, and biopsy may 
fail to capture the complete disease morphological and phenotypic profile due to inter- 
and intra-tumor heterogeneity3,4. Moreover, of every tissue block sent for diagnosis, 
only 1 or 2 slides are assessed5, hindering the pathologist’s ability to understand and 
capture the entire tumor environment6.The manual interpretation of tissue samples 
also introduces diagnostic uncertainty due, in part, to the pathologist’s decision tree, 
which relies on binary features that are susceptible to observer bias4. In many clinical 
settings, this has promoted routine adoption of molecular testing to distinguish between 
morphologically similar lesions3,4. In addition to being an expensive approach, the 
integration of diagnostic molecular pathology into the traditional pathology workflow 
remains challenging due to the lack of adequate training and expertise7,8.

Given the complexity of lung cancer classification and the limitations of current practices, 
there is a need for innovative clinical data assessment tools to help better describe 
disease characteristics and ascertain treatment planning and prognosis. The automated 
interpretation of pathology slides through computer-assisted diagnosis (CADx) has 
the potential to reduce reader variability, and is an area of active research9. Despite 
the emergence of CADx-friendly ecosystems alongside advances in the digitization 
of 2-dimensional pathology slides as well as 3-dimensional microscopy imaging9, the 
invasive nature of biopsies may expose patients to significant clinical complications, 
in addition to its limited cost effectiveness10. Existing approaches do not take full 
advantage of the vast amounts of other clinical information available in modern clinical 
practice, including radiographic imaging. Non-invasive histopathologic classification 
using routinely acquired radiographic images may serve as a viable alternative to routine 
interventional tissue sampling and could have significant implications for diagnostic 
and treatment decisions. 

Radiomics has emerged as a tool for quantifying the solid tumor phenotype through the 
extraction and mining of quantitative radiographic features11. There is a growing body of 
evidence pointing at the prognostic value of such features4,12,13 as well as their utility in 
stratifying patients by tumor grade14. While radiomics has primarily relied on the explicit 
extraction of engineered or hand-crafted imaging features13,15, more recent studies have 
shifted towards deep learning - convolutional neural networks (CNNs) specifically - 
where representative features are learned automatically from data16 . This has fostered the 
construction of advanced multi-parametric algorithms for cognitive decision-making in 
many clinical settings10. The combination of such powerful computer vision methods 
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with routine medical imaging promises to improve decision-support for the pathologist 
and oncologist at low cost12.

In this study, we leverage recent advances in radiomics and deep learning to develop 
models for enhancing pathologist and clinician accuracy and productivity within the 
setting of early-stage NSCLC. Building on data collected through the comprehensive 
Boston Lung Cancer Survival (BLCS) cohort, we created deep learning models that can 
act as non-invasive pathological biomarkers for NSCLC. We trained a CNN to stratify 
patients into 2 groups based on lung cancer histology. We also found that the CNN-
derived CT-radiomics features represented distinct biologic and diagnostic patterns in 
this cohort, and were associated with underlying tumor microanatomy. This preliminary 
work has the potential to enhance the human-based decision tree for NSCLC histologic 
classification, and non-invasive elucidation of tumor biology using radiographic data.

Materials and Methods

Table 1. Patient Characteristics and Follow-up Summary

Characteristic Value (n=311)
Length of Follow-up, Median, yr 3.9
2-year survival, No. (%) 268 (86.2)
Stage, No. (%)
I 186 (59.8)
II 125 (40.2)

Data retrieval and selection
Our model building and validation dataset consisted of a sample of 311 BLCS patients 
with early-stage NSCLC receiving care at Massachusetts General Hospital (MGH) 
between 1999-2011 (Table 1). Most patients underwent primary surgery for their 
disease. Approval was obtained from the Partners Institutional Review Board (IRB# 
1999P004935). Pre-resection computed tomography (CT) imaging data was obtained 
for the patient series. In addition, overall and progression free survival, cancer staging, 
and histopathologic data corresponding to these patients was documented. All patients 
had clinical Stage I or Stage II NSCLC. Clinical pathology reports read at MGH were 
used as ground truth. Patients were categorized into three groups; ADC, SCC and an 
“Other” category that comprised all other NSCLC histological subtypes, including large 
cell and mixed histology, bronchoalveolar carcinoma, carcinoid, and cases with more 
than one primary tumor (Figure S1 in Supplementary Material). Because oncogenic 
driver mutation status is not routinely collected for early-stage NSCLC patients at this 
site, and EGFR/KRAS testing has only been offered since 2008, only a small subset of 
18 (5.8%) patients also had this information available, and no further analysis using this 
information was pursued. 
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Data was partitioned randomly in order to pick test samples that are representative 
of the dataset as a whole, with no statistically significant difference in characteristics 
between model fine-tuning and test sets (Table 2). 

Table 2. Training and validation dataset characteristics 

Characteristic Tuning set Test set p
Histology 
All adeno and SCC a (n= 223)
Adenocarcinoma
Squamous Cell Carcinoma

n= 172 (77%) n= 51(23%)
n= 120 (70%) n= 35 (69%) p= 0.892b

n= 52 (30%) n= 16 (31%) p= 0.892 b

Stage
I (n= 129)
A 
B

n= 102 (59.3%) n= 27 (52.9%)  p= 0.417 b

n= 61 (35%) n= 13 (25%)
41 (23%) n= 14 (27%)

II (n = 94) 
A
B

n= 70 (40.7%) n= 24 (47.1%)  p= 0.586 b

n= 21 (12%) n= 10 (20%)
n= 49 (28%) n= 14 (27%)

Survival
2-yr survival n= 148 (86%) n= 43 (84%) p= 0.722 b

Data presented as n, % of respective data set (training or validation) a total number of cases with either adenocarcinoma 
or squamous cell histology, n b p represents the significance of the difference between the two sets

Image preprocessing
Image pre-processing included manual tumor identification, isotropic rescaling, and 
density normalization of input CT data. Segmentation of tumor regions was performed 
using a single-click seed-point placement technique. Here, a seed-point is placed in the 
center of the tumor region using the open-source 3D Slicer software (version 4.5.0-1, 
https://www.slicer.org/), after assessment of transverse sections slice by slice. We then 
extract 3D volumes around the seed-points and from this, 2D input tiles measuring 
50 mm x 50 mm (Figure S2 in Supplementary Material). Isotropic rescaling was 
performed on the image data with a linear interpolator to minimize distortion, applying 
scaling factors that allow for a uniform spatial representation of 1 mm × 1 mm for each 
isotropic pixel. Density normalization was also performed with mean subtraction and 
linear transformation.

Classification with deep convolutional neural-networks
In this exploratory analysis, CNNs were used for feature extraction and ultimate image 
classification. To address the challenge presented by the scarcity of curated medical 
data as well as the heterogeneous CT data normally encountered in routine clinical 
practice, we used a transfer learning approach, where robust models that are effective at 
performing other computer vision tasks are fine tuned to perform visual recognition on 
our imaging data. The VGG-16 (Visual Geometry Group) neural network architecture17 
pre-trained on a large natural image dataset (ImageNet) was assessed. We evaluated the 
network with fine-tuning of the last convolutional, pooling, and fully connected layers. 
Hyperparameter optimization was explored iteratively. Inputs of the VGG-16 model 
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were 50mm x 50mm image patches. The model had three input channels, all of which 
were fed grayscale images (that is, model inputs are identical stacked images). Fine-
tuning was performed over 100 epochs with a subset of patients that had either ADC or 
SCC histology for our primary model, model A, and with a mix of all 3 histology types 
(ADC, SCC, and “Other”) for the secondary model, model B (Figure 1). Accordingly, 
the final prediction (softmax) layer was changed to 2 for model A, and 3 for model 
B (Figure 2). The predictive performance of the models was evaluated with the area 
under the receiver operator curve (AUC), and other performance metrics outlined in 
the model assessment section. 

 Classification with deep convolutional neural-networks 

 In this exploratory analysis, CNNs were used for feature extraction and ultimate image 
 classification. To address the challenge presented by the scarcity of curated medical data as 
 well as the heterogeneous CT data normally encountered in routine clinical practice, we used a 
 transfer learning approach, where robust models that are effective at performing other computer 
 vision tasks are fine tuned to perform visual recognition on our imaging data. The VGG-16 
 (Visual Geometry Group) neural network architecture  17  pre-trained on a large natural image 
 dataset (ImageNet) was assessed. We evaluated the network with fine-tuning of the last 
 convolutional, pooling, and fully connected layers. Hyperparameter optimization was explored 
 iteratively. Inputs of the VGG-16 model were 50mm x 50mm image patches. The model had 
 three input channels, all of which were fed grayscale images (that is, model inputs are identical 
 stacked images). Fine-tuning was performed over 100 epochs with a subset of patients that had 
 either ADC or SCC histology for our primary model,  model A  , and with a mix of all 3 histology 
 types (ADC, SCC, and "Other") for the secondary model,  model B  (Figure 1)  . Accordingly, the 
 final prediction (softmax) layer was changed to 2 for  model A,  and 3 for  model B  (Figure 2)  . The 
 predictive performance of the models was evaluated with the area under the receiver operator 
 curve (AUC), and other performance metrics outlined in the model assessment section. 

 Figure 1:  Dataset breakdown for model A and model  B. Patients were categorized into three 
 groups; ADC, SCC, and and “Other” category that comprised all other NSCLC histology 
 subtypes. Similar to data presented in Table 2 for model A, model B was fine-tuned using the 
 same BLCS dataset, but with the inclusion of all other histology types. This translated to a 
 tuning-set with 120 ADC, 52 SCC, and 56 patients with “Other” histology types, and a test-set 
 with 35 ADC, 16 SCC, and 32 patients with “Other” histology types. 

 Feature based analysis and classification 

 Many studies have shown that CNN-derived feature maps may outperform the original CNN in 
 classification tasks when used with machine learning classifiers such as support vector machine 
 (SVM) and random forest classifiers (RF)  18–20  . Unlike  hand-crafted radiomics features, features 
 from CNNs preserve global spatial information with the convolutional kernel operations on the 
 input image (14). This gives them an advantage in fine-grained recognition, domain adaptation, 
 contextual recognition as well as texture attribute recognition (14). CNNs are also less 
 dependent on human curation which reduces bias. This provides rationale for an exploratory 
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Figure 1. Dataset breakdown for model A and model B. Patients were categorized into three groups; ADC, SCC, and and 
“Other” category that comprised all other NSCLC histology subtypes. Similar to data presented in Table 2 for model A, 
model B was fine-tuned using the same BLCS dataset, but with the inclusion of all other histology types. This translated 
to a tuning-set with 120 ADC, 52 SCC, and 56 patients with “Other” histology types, and a test-set with 35 ADC, 16 
SCC, and 32 patients with “Other” histology types. 

Feature based analysis and classification
Many studies have shown that CNN-derived feature maps may outperform the original 
CNN in classification tasks when used with machine learning classifiers such as support 
vector machine (SVM) and random forest classifiers (RF)18–20. Unlike hand-crafted 
radiomics features, features from CNNs preserve global spatial information with the 
convolutional kernel operations on the input image (14). This gives them an advantage 
in fine-grained recognition, domain adaptation, contextual recognition as well as 
texture attribute recognition (14). CNNs are also less dependent on human curation 
which reduces bias. This provides rationale for an exploratory analysis using the “deep-
radiomics” features from our models. For this, we generated features of the tumor regions 
as represented by the last pooling and the first fully connected layer of model A. The 
extracted descriptor feature vectors (512-D and 4096-D respectively) were normalized 
by subtracting the mean, and scaling to unit variance. This is essential to optimizing 
classification performance with discriminative machine learning classifiers, such as 
SVMs. Despite having flexible criteria, these methods may perform poorly if individual 
features deviate significantly from a normal distribution. In our data, individual features 
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appeared to follow Gaussian or Gaussian mixture distributions which validates this 
approach (Figure S3 in Supplementary Material).

Compared to filtered feature reduction techniques which may eliminate important high 
order features, unsupervised feature reduction maintains the interaction among features, 
benefiting the model training process. Algorithms for unsupervised learning include 
principal component analysis (PCA) and auto-encoders, a generalized form of PCA. In 
our analysis, dimensionality reduction was performed using PCA to select independent 
features corresponding to a set threshold (>95%) of cumulative explained variance. The 
least absolute shrinkage and selection operator (LASSO) method was then used to select 
features that have the strongest association with the target types (shrinkage parameter,  
α = 0.01). Four machine-learning classification models were independently evaluated on 
the extracted features: support vector machine (SVM) with both linear and non-linear 
kernels, k-nearest neighbors (kNN), as well as the random forest (RF) classifier21,22.

 analysis using the “deep-radiomics” features from our models. For this, we generated features 
 of the tumor regions as represented by the last pooling and the first fully connected layer of 
 model A  . The extracted descriptor feature vectors  (512-D and 4096-D respectively) were 
 normalized by subtracting the mean, and scaling to unit variance. This is essential to optimizing 
 classification performance with discriminative machine learning classifiers, such as SVMs. 
 Despite having flexible criteria, these methods may perform poorly if individual features deviate 
 significantly from a normal distribution. In our data, individual features appeared to follow 
 Gaussian or Gaussian mixture distributions which validates this approach (  Figure S3  in 
 Supplementary Material). 

 Compared to filtered feature reduction techniques which may eliminate important high 
 order features, unsupervised feature reduction maintains the interaction among features, 
 benefiting the model training process. Algorithms for unsupervised learning include principal 
 component analysis (PCA) and auto-encoders, a generalized form of PCA. In our analysis, 
 dimensionality reduction was performed using PCA to select independent features 
 corresponding to a set threshold (>95%) of cumulative explained variance. The least absolute 
 shrinkage and selection operator (LASSO) method was then used to select features that have 
 the strongest association with the target types (shrinkage parameter, α = 0.01). Four 
 machine-learning classification models were independently evaluated on the extracted features: 
 support vector machine (SVM) with both linear and non-linear kernels, k-nearest neighbors 
 (kNN), as well as the random forest (RF) classifier  21,22  . 

 Figure 2:  Experimental design. A convolutional neural  network (VGG16) developed by the 
 visual geometry group at Oxford and pre-trained on the large ImageNet dataset of more than 14 
 million hand-annotated natural images is employed in this analytical study. Model A is fine-tuned 
 using a sample of 172 patients with either adenocarcinoma or squamous cell carcinoma and is 
 used to predict future cases of these histology types using a held-out test set of 51 patients with 
 adenocarcinoma or squamous cell carcinoma only. This model is also used as a fixed feature 
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Figure 2. Experimental design. A convolutional neural network (VGG16) developed by the visual geometry group 
at Oxford and pre-trained on the large ImageNet dataset of more than 14 million hand-annotated natural images is 
employed in this analytical study. Model A is fine-tuned using a sample of 172 patients with either adenocarcinoma 
or squamous cell carcinoma and is used to predict future cases of these histology types using a held-out test set of 51 
patients with adenocarcinoma or squamous cell carcinoma only. This model is also used as a fixed feature extractor for the 
assessment of machine learning classifiers (kNN, SVM, Linear-SVM, RF). These quantitative radiographic features are 
derived from the last pooling and first fully connected layers, corresponding to 512-D and 4096-D vectors, respectively. 
Model A is also used as a probabilistic classifier of histology and tested on a held-out test-set of 83 cases containing 
all histology types, grouped into adenocarcinoma, squamous cell carcinoma, or other. Model B is the fully connected 
VGG16 network tuned with a heterogenous sample of 228 cases with all histology types, and has as its output 3 different 
histology types, tested on the 83-patient sample as illustrated.

Model assessment
We assessed the discriminative power of model A in distinguishing the two most common 
histologies ADC vs SCC. Training for this and the feature based models was performed 
on the subset of patients with these histology types, translating to 172 for tuning and 
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51 for testing. Effects of hyper-parameter optimization e.g batch size were evaluated, as 
was the depth of fine tuning.

To assess the predictive performance of our models we used different descriptive indices 
including the area under the receiver operator curves (AUC), accuracy, sensitivity, and 
specificity. We also computed the Wilcoxon rank sum statistic for the binary predicted 
samples and a two-sided p-value of the test, with the assumption that these are samples 
from continuous distributions. Features or models with an AUC above 0.60 and a 
p-value below 0.05 are generally considered predictive in similar studies23.

Neural network prediction probabilities and histological groups
In addition to noting model A performance in distinguishing ADC vs SCC, it may also 
be important to see how our CNN based biomarker performs on a dataset containing 
other histologies. For this we looked at a heterogeneous held-out test set of 83 patients 
containing ADC (n=48), SCC (n=18), and “Other” histologies (n =17). Using model 
A as a probabilistic classifier24, the non-parametric Kruskal-Wallis H-test test was 
performed on the CNN-based prediction probabilities to assess the difference between 
the three independent samples of ADC, SCC, and “Other” on the test set. A p-value < 
0.05 was considered as statistical significance. We also noted the model performance 
AUC and accuracy for the correct prediction of ADC in this heterogeneous data set 
(discriminative power).

For comparison, an identical network architecture, model B was fine-tuned using a 
non-overlapping composite dataset of 228 cases with all histologic types (ADC, SCC, 
Other). This seperate model was then tested on the same heterogeneous dataset of 83 
patients. Given that three types exist for this model, micro-averaging of the predicted 
types was employed to binarize the ROC scores to either ADC vs all other histologies or 
SCC vs all other histologies. 

Results

Clinical Characteristics
Our total patient cohort consisted of 311 patients diagnosed with early-stage NSCLC. A 
total of 186 (59.8%) patients had overall Stage I, and 125 (40.2%) had Stage II disease. 
Median follow-up from time of diagnosis was 3.5 years, with 86% 2-year survival. 155 
(49.8%) patients had pathologist determined ADC, 68 (21.9%) of patients had SCC. 
The remaining 88 (28.3%) patients had all other histological subtypes, which included 
large cell and mixed histology, bronchoalveolar carcinoma, carcinoid, and cases with 
more than one primary tumor. Molecular testing for EGFR/KRAS mutation was done 
for 18 (5.8%) patients. Overall patient characteristics are summarized in Table 1. Model 
A fine-tuning and test cohort characteristics are summarized in Table 2.

Classification with CNNs
The VGG-16 based model A achieved significant predictive performance differentiating 
between ADC and SCC on a held-out test set of 51 patients with AUC of 0.71 (p = 
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0.018) (Table 3). Similar fine-tuning and model evaluation was performed with another 
widely adopted ImageNet architecture, the ResNet50 network architecture 25. There was 
no significant difference in its discriminative output and results from this analysis are 
included in the supplement. 

Table3. Histology prediction probabilities for neural network vs PCA-derived feature-based classifiers

Method AUC a Accuracy Specificity Sensitivity p
Fully Connected Neural Network Classifier
VGG-16 (Model A) 0.709 68.6% 82.9% 37.5% 0.018
Machine learning classifiers on 512-D feature vectors 

 kNN (k = 5) b 0.636 68.6% 77.1% 50% 0.123
 Linear Support Vector 
Machine

0.616 70.6% 85.7 37.5% 0.187

Support Vector Machine 0.630 72.5% 88.6% 37.5% 0.138
Random Forest 0.613 72.5% 91.4% 31.3% 0.197
Machine learning classifiers on 4096-D feature vectors
 kNN (k = 5) b 0.71 76.5% 85.7% 56.3% 0.017
 Linear Support Vector 
Machine

0.679 74.5% 85.7% 50% 0.042

Support Vector Machine 0.642 76.5% 97.1% 31.3% 0.107
Random Forest 0.571 66.7% 82.9% 31.3% 0.423

 a Area under the ROC curve b k number of specified nearest neighbors, an even integer

Classification with CNN-derived features
With a threshold of 95% cumulative explained variance, PCA was able to perform 
dimensionality reduction of the 512-D and 4096-D feature space to 60 principal 
components. Feature selection with the LASSO (alpha = 0.01) yielded the 18 best 
performing features used in model building.

All models based on CNN-derived features were able to perform binary classification of 
tumor histology (ADC vs SCC). The 4096-D feature vector seemed to correlate with 
marginally better predictive performance with most machine learning classifiers, except 
with the RF classifier. The kNN model had the highest performance (AUC = 0.71, p = 
0.017). This was on par with or better than the CNN (AUC = 0.71, p = 0.018). Other 
classifiers also showed significant predictive power, with an AUC of 0.68 (p = 0.042) for 
SVC with linear kernel (c = 0.1), AUC of 0.64 (p = 0.107) for non-linear SVC classifier. 
RF had the lowest predictive performance in all instances (AUC = 0.57, p =0.423), 
although this improved to an AUC of 0.61 (p = 0.197) with the 512-D feature vector. 
All models had higher specificity than sensitivity, while accuracy was again highest with 
the kNN model (Table 3).
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 Table3:  Histology prediction probabilities for neural network vs PCA-derived feature-based 
 classifiers 

 Classification with CNN-derived features 

 With a threshold of 95% cumulative explained variance, PCA was able to perform 
 dimensionality reduction of the 512-D and 4096-D feature space to 60 principal components. 
 Feature selection with the LASSO (alpha = 0.01) yielded the 18 best performing features used 
 in model building. 

 All models based on CNN-derived features were able to perform binary classification of 
 tumor histology (ADC vs SCC). The 4096-D feature vector seemed to correlate with marginally 
 better predictive performance with most machine learning classifiers, except with the RF 
 classifier. The kNN model had the highest performance (AUC = 0.71, p = 0.017). This was on 
 par with or better than the CNN (AUC = 0.71, p = 0.018). Other classifiers also showed 
 significant predictive power, with an AUC of 0.68 (p = 0.042) for SVC with linear kernel (c = 0.1), 
 AUC of 0.64 (p = 0.107) for non-linear SVC classifier. RF had the lowest predictive performance 
 in all instances (AUC = 0.57, p =0.423), although this improved to an AUC of 0.61 (p = 0.197) 
 with the 512-D feature vector. All models had higher specificity than sensitivity, while accuracy 
 was again highest with the kNN model  (Table 3)  . 

 Figure 3:  Model A and B schematic. This convolutional  neural network architecture is based on 
 the VGG architecture. With our transfer learning approach, weights of the last convolutional and 
 pooling layers were fine-tuned using radiographic data. Model A, tuned on adenocarcinoma and 
 squamous cell carcinoma tuning-set, had two classes as output in the softmax layer, while 
 Model B which was tuned on a dataset containing all histology types had 3 type outputs. 

 Neural network prediction probabilities and histological groups 

 The 83 patient heterogeneous test set contained three histologic subgroups, ADC, SCC, and 
 “Other”. Looking at distributions of the prediction probabilities for each of these subgroups, 
 based on our CNN biomarker, a statistically significant difference was noted for a comparison of 
 all 3 groups (p=0.015). Post-hoc comparisons between groups showed that the difference was 
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Figure 3. Model A and B schematic. This convolutional neural network architecture is based on the VGG architecture. 
With our transfer learning approach, weights of the last convolutional and pooling layers were fine-tuned using 
radiographic data. Model A, tuned on adenocarcinoma and squamous cell carcinoma tuning-set, had two classes as 
output in the softmax layer, while Model B which was tuned on a dataset containing all histology types had 3 type 
outputs.

Neural network prediction probabilities and histological groups
The 83 patient heterogeneous test set contained three histologic subgroups, ADC, SCC, 
and “Other”. Looking at distributions of the prediction probabilities for each of these 
subgroups, based on our CNN biomarker, a statistically significant difference was noted 
for a comparison of all 3 groups (p=0.015). Post-hoc comparisons between groups 
showed that the difference was most pronounced between the ADC and SCC groups 
(p-value =0.003) (Figure 4). There was a trend towards significance (p=0.235) between 
the predictions for the SCC and “Other” groups, however there was no statistically 
significant difference between the ADC and “Other” groups (p = 0.355). In keeping 
with the assumption that the test statistic H has a chi-square distribution, our sample 
sizes were all significantly greater than 5. Even in this heterogeneous test set, model A was 
still able to correctly predict ADC with an AUC of 0.66 (p = 0.013). The test specificity 
was 85% and sensitivity was 31% for ADC.
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 most pronounced between the ADC and SCC groups (p-value =0.003)  (Figure 4)  . There was a 
 trend towards significance (p=0.235) between the predictions for the SCC and “Other” groups, 
 however there was no statistically significant difference between the ADC and “Other” groups (p 
 = 0.355). In keeping with the assumption that the test statistic H has a chi-square distribution, 
 our sample sizes were all significantly greater than 5. Even in this heterogeneous test set, 
 model A  was still able to correctly predict ADC with  an AUC of 0.66 (p = 0.013). The test 
 specificity was 85% and sensitivity was 31% for ADC. 

 Figure 4:  Model A as probabilistic classifier of non-small  cell histology in 83 sample held-out 
 test set containing all histology types. There is a statistically significant difference in predictions 
 comparing all 3 histology groups: ADC, SCC, Other. Comparison of ADC vs SCC revealed a 
 statistically significant difference with p-value of 0.003, while comparison of SCC vs Other had a 
 p-value of p = 0.235, and ADC vs Other had a p-value of 0.355. 

 A separate analysis using an identical VGG network architecture,  model B  fine-tuned 
 with a heterogeneous tuning set (n=228) containing all 3 histologic groups also had some 
 predictive power when tested on the same 83 patient test set, albeit to a lesser extent. Using the 
 ROC metric to evaluate classifier output quality for the 3-type model, ROC score when 
 binarizing for SCC vs all other histologies was 0.62 (p = 0.127), and AUC = 0.58 (p=0.234) 
 when binarizing ADC vs all other histologies. As such, the model trained on ADC and SCC 
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Figure 4. Model A as probabilistic classifier of non-small cell histology in 83 sample held-out test set containing all 
histology types. There is a statistically significant difference in predictions comparing all 3 histology groups: ADC, SCC, 
Other. Comparison of ADC vs SCC revealed a statistically significant difference with p-value of 0.003, while comparison 
of SCC vs Other had a p-value of p = 0.235, and ADC vs Other had a p-value of 0.355.

A separate analysis using an identical VGG network architecture, model B fine-tuned 
with a heterogeneous tuning set (n=228) containing all 3 histologic groups also had 
some predictive power when tested on the same 83 patient test set, albeit to a lesser 
extent. Using the ROC metric to evaluate classifier output quality for the 3-type model, 
ROC score when binarizing for SCC vs all other histologies was 0.62 (p = 0.127), and 
AUC = 0.58 (p=0.234) when binarizing ADC vs all other histologies. As such, the 
model trained on ADC and SCC alone outperformed one trained on all histologies in 
differentiating ADC histology from all other histology types (AUC = 0.66 compared to 
AUC =0.58). 
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Model Interpretability
Activation heat mapping was obtained using Gradient-weighted Class Activation 
Mapping26. Here we extracted heatmaps for all layers of our best performing model, 
model A, and selected representative examples (Figure 5). This provided a spatial 
representation of areas within the input images that contribute the most to the model 
prediction. The first convolutional layers highlighted tumor edges. This is in line with 
what is observed when pre-trained models with similar architectures are applied to 
natural images, while deeper layers tend to pick up more abstract features, and in our 
experiment highlighted regions on or immediately around the tumor. 

 alone outperformed one trained on all histologies in differentiating ADC histology from all other 
 histology types (AUC = 0.66 compared to AUC =0.58). 

 Model Interpretability 

 Activation heat mapping was obtained using Gradient-weighted Class Activation Mapping  26  . 
 Here we extracted heatmaps for all layers of our best performing model,  model A,  and selected 
 representative examples  (Figure 5)  . This provided  a spatial representation of areas within the 
 input images that contribute the most to the model prediction.  The first convolutional layers 
 highlighted tumor edges. This is in line with what is observed when pre-trained models with 
 similar architectures are applied to natural images, while deeper layers tend to pick up more 
 abstract features, and in our experiment highlighted regions on or immediately around the 
 tumor. 

 Figure 5:  Gradient based class activation heat maps  (Grad-CAM) for deep learning based 
 model A. Visualization of image regions with the most discriminative value in type prediction as 
 determined by the best performing convolutional neural network model. Here sample test input 
 images are shown with overlaid activation contours, where red highlights regions with highest 
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Figure 5. Gradient based class activation heat maps (Grad-CAM) for deep learning based model A. Visualization of 
image regions with the most discriminative value in type prediction as determined by the best performing convolutional 
neural network model. Here sample test input images are shown with overlaid activation contours, where red highlights 
regions with highest contribution and blue represents areas with the least value. The second and last convolutional layers 
in model A were used for generation of class activation maps as depicted by Figure 3.
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Discussion

We investigated the utility of CNNs in predicting histology in early-stage NSCLC 
patients, using routinely acquired noninvasive radiologic images. We also assessed 
the association of CNN-derived quantitative radiographic image feature maps with 
histologic phenotype in this cohort. The goal of this work was to non-invasively predict 
cancer histology, and develop robust deep-learning based CT-radiomics models to aid 
pathologists in differentiating clinically important histologic subtypes in NSCLC.

We found that CNNs, which are effective at natural image recognition tasks, can be 
implemented to distinguish between the most common histopathologic subtypes in 
NSCLC. With enough labeled training data, they are able to detect subtle differences 
in the image features, which may not be apparent to the human observer, to aid in 
classification of clinically important groups, or predict the probability of certain 
phenotypes in future cases10. Using pre-trained models enabled us to build on previously 
learned low-/mid-level features in digital images (e.g., edges, shadows, texture etc). 
This reduces the likelihood of over-fitting, given the relatively large models , high 
dimensionality of features, and the limited size datasets. It also allows the model to more 
effectively decode heterogeneous image data as is commonly encountered in routine 
clinical practice, thereby aiding in the construction of models that are robust to these 
variations.

Our best performing model was able to detect adenocarcinoma with higher specificity 
than sensitivity, which could justify its potential role as a tool for computer assisted 
diagnosis. There is predictive and prognostic value in tumor histology, hence the ability 
to non-invasively predict this characteristic could provide significant cost and time saving 
benefits in addition to its ability to boost pathologist accuracy and productivity10,12.

 Prior studies have demonstrated the utility of CNNs as fixed feature extractors for 
image analysis and classification tasks, with many using the outputs from the last 
convolutional, pooling, or fully connected layers in VGG or related models18–20,27. We 
followed a similar approach in this work using the image feature representations from 
these layers in combination with various machine learning classifiers. These abstract high 
dimensional features are descriptive of the original image data with a great degree of 
redundancy. PCA was used for dimensionality reduction for its ability to preserve higher 
order features and their relationships, while eliminating a vast majority of the redundant 
features. Subsequently applying the LASSO led to the retention of only features with the 
strongest association with the predicted types28,29. Narrowing the dimensionality of the 
deep-radiomics feature space brings performance benefits and avoids overfitting. This 
was realized in this study with the kNN estimator which performed on par with the 
original neural network on the learned features, while other classifiers including SVM 
also showed significant predictive power with both feature sets. The findings suggest 
that dimensionality-reduction of CNN derived feature maps to summarize them with 
low-dimensional vectors, may serve as a robust multi-step alternative to fully-connected 
neural networks. This approach is in line with similar methods in the data science 
literature18–20,30,31.
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Both the 512-D and 4096-D feature space were successfully reduced to 18 best 
performing features. This suggests the same features were selected from both layers, 
which speaks to the reproducibility of the features. However, machine learning classifiers 
built around the 4096-D feature vector from the first fully connected layer seemed to 
correlate with marginally better predictive performance than from the 512-D feature 
vector. Neurons in a fully connected layer have full connections to all activations in the 
previous layer, whereas convolutional layers have connection to only the local features. 
This could help explain the marginally better performance with the fully connected layer 
(FC1, Figure 3).

Looking at our CNN based biomarker as a probabilistic classifier of histology, we found 
that there is strong association between model prediction value and the likelihood of 
certain tumor phenotypes actually being present. That is, higher prediction certainty 
was associated with correct type prediction. For our analysis, because the histology 
group distribution was unbalanced, with more ADC than SCC and “Other”, we 
favored using a group-based analysis of prediction probability distributions over directly 
assessing the association of certain types with percentiles of prediction probabilities. 
The ADC and SCC groups were found to have the most significant difference, which 
was expected, given our CNN biomarker was trained on distinguishing these two 
subtypes. No statistically significant difference existed between the ADC and “Other” 
groups, suggesting a significant overlap in radiographic phenotypes (or deep-radiomics 
features) in ADCs and the “Other” group. It is also in line with the widely reported 
misclassification of histologic subtypes in these broad umbrella groups, such as the 
notable misclassification of bronchoalveolar carcinoma (BAC) as adenocarcinoma 
or undifferentiated NSCLC or mixed phenotypes32, with recent revised classification 
replacing the term BAC altogether33. As such, the “Other” group may contain a significant 
number of misclassified ADCs2. These findings not only demonstrate the validity of 
our CNN biomarker, but also open avenues for AI-enhanced methods to potentially 
drive paradigm shifts in histopathologic classification. In any case, adding these “Other” 
histologies to the test set introduced noise, reducing our model discriminative capacity. 
Furthermore, including “Other” histologies in the tuning cohort further reduces model 
performance, with the model trained on ADC and SCC alone outperforming one 
trained on all histologies in differentiating ADC histology from all others. 

A well-recognized limitation of neural networks is their black-box nature. Looking at 
intermediate layers may help shed light into learned features, and further enhance the 
performance of our models. CNN interpretability is an area of increased investigation 
for the potential to not only help us understand how the models work, but also gain 
new insights into clinical data routinely encountered and be able to identify and predict 
failures. Here we found through gradient-based class activation heat mapping that 
our best performing model was activating on relevant image regions. In addition to 
the lesion of interest, our model also highlighted areas around the tumor, suggesting 
surrounding contextual information may also have predictive value. For lesions near 
the chest wall, the CNN appeared to still focus on the lesion and lung parenchyma, 
while placing less value on other structures including bone and soft tissue, which may 
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otherwise have similar CT density to tumor. This suggests an ability to learn complex 
and representative features. Overall these findings make intuitive sense, and importantly, 
provide reassurance that the model is detecting the right structures within our region of 
interest (ROI). 

Access to the comprehensive BLCS cohort which has extensive clinical and biologic data 
was a unique strength of this study. Furthermore, our approach does not rely on accurate 
segmentation of tumor regions to work. This creates a less time intensive and more 
efficient work flow, whereas conventional approaches require precise tumor annotations, 
and are therefore more prone to human bias34,35. However, some limitations to the 
present study include small sample size and the lack of external validation. In addition, 
the interpretability exercise presented here is qualitative, and quantitative metrics may 
better validate future analyses. 

The findings from this study provide a proof-of-concept that deep-learning based 
radiomics can identify histological phenotypes in lung cancer, and is a promising 
approach for non-invasive lung cancer histology classification. There is potential for 
clinical applicability of these models as decision support tools. While such methods are 
unlikely to replace the biopsy, they can help select those that may not require invasive 
diagnostic procedures. This can be achieved through radiomics’ ability to stratify patients 
according to risk based on both abstract and well understood radiographic correlates. 
For example, while both SCC and ADC can cavitate, SCC cavitates more frequently. 
Small cell carcinoma, yet another important bronchogenic carcinoma, is never known 
to cavitate.  Conversely, ADCs present with a characteristic ground glass appearance36. 
These well documented and easily identifiable distinctive imaging characteristics provide 
a firm theoretical basis for taking this approach a step further with radiomics. Similar 
studies have explored using CT texture analysis for histopathological grading in other 
disease sites including pancreatic ductal adenocarcinoma37. As such, deep-learning based 
radiomics has the potential to serve as both a decision-support tool and a corrective aid 
for the diagnostician. 

Deep-learning based radiomics has the potential to create new paradigms in lung cancer 
risk assessment, by enabling us to transform the current rigid classification system 
into a more analytical and flexible model that includes radiological, biological, and 
other variables11,13,15,37,38. These methods can also potentially augment other emerging 
techniques, such as liquid biopsy; offering complementary information to guide clinical 
decision making. As molecular testing data becomes more widely available39, future 
research may also help clarify the prognostic and predictive value of oncogenes such 
as KRAS in lung cancer. This additional information may also help establish stronger 
correlations between the deep learning based radiomics signatures and tumor biological 
data as it relates to histologically misclassified tumors. 
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Abstract

Purpose: Tumors are continuously evolving biological systems, and medical imaging 
is uniquely positioned to monitor changes throughout treatment. While qualitatively 
tracking lesions over space and time may be trivial, the development of clinically-
relevant, automated radiomics methods that incorporate serial imaging data is far more 
challenging. In this study, we evaluated deep-learning networks for predicting clinical 
outcomes through analyzing time-series CT-images of locally advanced non-small cell 
lung cancer (NSCLC) patients. 

Experimental Design: Dataset-A consists of 179 stage-III NSCLC patients treated 
with definitive chemoradiation, with pre- and post-treatment CT-images at 1, 3, and 
6 months follow-up (581 scans). Models were developed using transfer-learning of 
convolutional neural-networks(CNNs) with recurrent-networks(RNN), using single 
seed-point tumor-localization. Pathologic-response validation was performed on 
Dataset-B, comprising 89 NSCLC patients treated with chemoradiation and surgery 
(178 scans).

Results: Deep-learning models using time-series scans were significantly predictive of 
survival and cancer-specific outcomes (progression, distant metastases and local-regional 
recurrence). Model performance was enhanced with each additional follow-up scan into 
the CNN model (e.g. 2-year overall-survival: AUC=0.74,p<0.05). The models stratified 
patients into low and high mortality risk-groups, which were significantly associated with 
overall-survival (HR=6.16, 95%CI[2.17,17.44],p<0.001). The model also significantly 
predicted pathological-response in Dataset B (p=0.016).

Conclusion: We demonstrate that deep-learning can integrate imaging-scans at multiple 
time-points to improve clinical outcome predictions. AI-based non-invasive radiomics 
biomarkers can have a significant impact in the clinic, given their low cost and minimal 
requirements for human input.
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Translational Relevance 

Medical imaging provides non-invasive means for tracking patients’ tumor response 
and progression after treatment. However, quantitative assessment through manual 
measurements is tedious, time consuming, and prone to inter-operator variability as 
visual evaluation can be non-objective and biased.Artificial intelligence (AI) can perform 
automated quantification of radiographic characteristics of tumor phenotypes as well 
as monitor changes in tumors, before, during, and after treatment in a quantitative 
manner. In this study, we demonstrated the ability of deep learning networks to predict 
prognostic endpoints of patients treated with radiation therapy using serial CT imaging 
routinely obtained during follow-up. We also highlight their potential in accounting 
for and utilizing the available serial images to extract the relevant time-point and image 
features pertinent to the prediction of survival and response to treatment. This provides 
further insight into applications including the detection of gross residual disease without 
surgical intervention, as well as other personalized medicine practices.
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Introduction

Lung cancer is one of the most common cancers worldwide and the highest contributor 
to cancer death in both the developed and developing worlds1. Among these patients, 
most are diagnosed with non-small-cell lung cancer (NSCLC) and have a five-year 
survival rate of only 18%1,2. Despite recent advancements in medicine spurring a large 
increase in overall cancer survival rates, this improvement is less consequential in lung 
cancer, as most symptomatic and diagnosed patients have late stage disease3. These 
late stage lesions are often treated with non-surgical approaches, including radiation, 
chemotherapy, targeted, or immunotherapies. This signals the dire need for monitoring 
therapy response using follow up imaging and tracking radiographic changes of tumors 
over time4. Clinical response assessment criterias, such as the response evaluation criteria 
in solid tumors (RECIST)5, analyse time series data using simple size based measures 
such as axial diameter of lesions. 

Artificial Intelligence (AI), allows for a quantitative, instead of a qualitative, assessment of 
radiographic tumor characteristics, a process also referred to as ‘radiomics’6. Indeed, several 
studies have demonstrated the ability to non-invasively describe tumor phenotypes with 
more predictive power than routine clinical measures7–10. Traditional machine learning 
techniques involved the derivation of engineered-features for quantitative description 
of images with success in detecting biomarkers for response assessment and clinical 
outcome prediction11–15. Recent advancements in deep learning6, have demonstrated 
successful applications in image analysis without human feature definition16. The use of 
convolutional neural networks (CNN) allows for the automated extraction of imaging 
features and identification of non-linear relationships in complex data. CNN networks 
which have been trained on millions of photographic images can be applied to medical 
images through transfer learning17. This has been demonstrated in cancer research with 
regards to tumor detection and staging18. AI developments can be clinically applicable to 
enhance patient care by providing accurate and efficient decision support6,11. 

The majority of quantitative imaging studies have focused on the development of 
imaging biomarkers for a single time-point19,20. However, the tumor is a dynamic 
biological system with vascular and stem cell contributions, which may respond, thus 
the phenotype may not be completely captured at a single time-point21,22. It may be 
beneficial to incorporate post-treatment CT scans from routine clinical follow-up as a 
means to tracking changes in phenotypic characteristics after radiation therapy. State of 
the art deep learning methods in video classification and natural language processing 
have utilized recurrent neural networks (RNN) to incorporate longitudinal data23. 
However, only a few studies have applied these advanced computational approaches in 
radiology24.

In this study, we use AI in the form of deep learning, specifically CNNs and RNNs, to 
predict survival and other clinical endpoints of NSCLC patients by incorporating pre-
treatment and follow-up CT images. Two datasets were analyzed containing patients with 
similar diagnosis of stage III lung cancer, but treated with different therapy regimens. 
In the first dataset, we developed and evaluated deep learning models in patients treated 
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with definitive chemoradiation therapy. The generalizability and further pathologic 
validation of the network was evaluated on a second dataset comprising patients treated 
with chemoradiation followed by surgery. For localization of the tumors, only single-
click seed points were needed without volumetric segmentations, demonstrating the 
ease of incorporating a large number of scans at several time points into deep learning 
analyses. The CT imaging-based patient survival predictions can be applied to response 
assessment in clinical trials, precision medicine practices, and tailored clinical therapy. 
This work has implications for the use of AI-based imaging biomarkers in the clinic, as 
they can be applied noninvasively, repeatedly, at low cost, and requiring minimal human 
input. 

 chemoradiation therapy. The generalizability and further pathologic validation of the network 
 was evaluated on a second dataset comprising patients treated with chemoradiation followed by 
 surgery. For localization of the tumors, only single-click seed points were needed without 
 volumetric segmentations, demonstrating the ease of incorporating a large number of scans at 
 several time points into deep learning analyses. The CT imaging-based patient survival 
 predictions can be applied to response assessment in clinical trials, precision medicine 
 practices, and tailored clinical therapy. This work has implications for the use of AI-based 
 imaging biomarkers in the clinic, as they can be applied noninvasively, repeatedly, at low cost, 
 and requiring minimal human input. 

 Figure 1:  Serial Patient Scans.  Representative computed  tomography (CT) images of stage III 
 non-surgical NSCLC patients before radiation therapy and one, three, and six months post 
 radiation therapy. A single click seed point identifies the input image patch (defined by the 
 dotted white line) that was inputted into the neural network. 

 MATERIALS AND METHODS 

 Patient cohorts.  We used two independent cohorts,  Dataset A and Dataset B consisting of a 
 total of 268 stage III NSCLC patients for this analysis. Dataset A contained 179 consecutive 
 patients who were treated at Brigham and Women’s/Dana-Farber Cancer Center between 2003 
 and 2014 with definitive radiation therapy and chemotherapy with Carboplatin/Paclitaxel (Taxol) 
 or Cisplatin/Etoposide (chemoRT) and had at least one follow-up CT scan. We analyzed a total 
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Figure 1. Serial Patient Scans. Representative computed tomography (CT) images of stage III non-surgical NSCLC 
patients before radiation therapy and one, three, and six months post radiation therapy. A single click seed point identifies 
the input image patch (defined by the dotted white line) that was inputted into the neural network. 
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Materials and Methods

Patient cohorts. We used two independent cohorts, Dataset A and Dataset B consisting 
of a total of 268 stage III NSCLC patients for this analysis. Dataset A contained 179 
consecutive patients who were treated at Brigham and Women’s/Dana-Farber Cancer 
Center between 2003 and 2014 with definitive radiation therapy and chemotherapy 
with Carboplatin/Paclitaxel (Taxol) or Cisplatin/Etoposide (chemoRT) and had at 
least one follow-up CT scan. We analyzed a total of 581 CT scans (average of 3.2; 
range 2-4 scans per patient, 125 attenuation CTs from PET and 456 diagnostic CTs) 
of pre-treatment and follow-up scans at 1, 3 and 6 months after radiation therapy for 
delta analysis of the serial scans (Figure 1). The CT-PET scans were acquired without 
iodinated contrast, and the contrast administration of chest CT scans are patient specific 
and based on clinical guidelines. As a realistic representation of clinical settings, not all 
patients received imaging scans at all time points (Figure S1). Patients with surgery 
prior to or after therapy were not included in this study. The main endpoint of this study 
was the prediction of survival and prognostic factors for stage III patients treated with 
definitive radiation (Figure 2). Dataset A was randomly split 2:1 into training/tuning 
(n=107) and test (n=72). Overall, survival was assessed along with three other clinical 
endpoints for the definitive radiation therapy cohort: distant metastases, locoregional 
recurrence, and progression.

 of 581 CT scans (average of 3.2; range 2-4 scans per patient, 125 attenuation CTs from PET 
 and 456 diagnostic CTs) of pre-treatment and follow-up scans at 1, 3 and 6 months after 
 radiation therapy for delta analysis of the serial scans  (  Figure 1  )  . The CT-PET scans were 
 acquired without iodinated contrast, and the contrast administration of chest CT scans are 
 patient specific and based on clinical guidelines. As a realistic representation of clinical settings, 
 not all patients received imaging scans at all time points  (  Figure S1  )  . Patients with surgery 
 prior to or after therapy were not included in this study.  The main endpoint of this study was the 
 prediction of survival and prognostic factors for stage III patients treated with definitive radiation 
 (  Figure 2  )  . Dataset A was randomly split 2:1 into  training/tuning (n=107) and test (n=72). 
 Overall, survival was assessed along with three other clinical endpoints for the definitive 
 radiation therapy cohort: distant metastases, locoregional recurrence, and progression. 

 Figure 2:  Analysis Design.  Depiction of the deep learning  based workflow with two datasets and 
 additional comparative models. Dataset A included patients treated with chemotherapy and 
 definitive radiation therapy, and was used to train and fine tune a ResNet convolutional neural 
 network (CNN) combined with a recurrent neural network (RNN) for predictions of survival. A 
 separate test set from this cohort was used to assess performance and compared with the 
 performance of radiographic and clinical features. Dataset B included patients treated with 
 chemotherapy and surgery. This cohort was used as an additional test set to predict 
 pathological response, and the model predictions were compared to the change in volume. 

 An additional test was performed on Dataset B, a cohort of 89 consecutive, stage III 
 NSCLC patients from our institution between 2001 and 2013, who were treated with 
 neoadjuvant radiotherapy and chemotherapy prior to surgical resection (trimodality). The 
 analysis of Dataset B was included for further validation with a range of standard of care 
 treatment protocols. A total of 178 CT scans with two time points; scans taken prior to radiation 
 therapy and the scans after radiation were used, both taken prior to surgery. Patient exclusion 
 included those who presented with distant metastasis or those with more than a 120 day delay 
 between chemoradiation and surgery, as well as those without survival data. For both cohorts, 
 no histological exclusions were applied. The endpoint of the additional test set of trimodality 
 patients was the prediction of pathological response, validated at the time of surgery. The 
 residual tumor was classified as responders (pathological complete response n = 14, and 
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Figure 2. Analysis Design. Depiction of the deep learning based workflow with two datasets and additional comparative 
models. Dataset A included patients treated with chemotherapy and definitive radiation therapy, and was used to train 
and fine tune a ResNet convolutional neural network (CNN) combined with a recurrent neural network (RNN) for 
predictions of survival. A separate test set from this cohort was used to assess performance and compared with the 
performance of radiographic and clinical features. Dataset B included patients treated with chemotherapy and surgery. 
This cohort was used as an additional test set to predict pathological response, and the model predictions were compared 
to the change in volume.

An additional test was performed on Dataset B, a cohort of 89 consecutive, stage III 
NSCLC patients from our institution between 2001 and 2013, who were treated with 
neoadjuvant radiotherapy and chemotherapy prior to surgical resection (trimodality). 
The analysis of Dataset B was included for further validation with a range of standard 
of care treatment protocols. A total of 178 CT scans with two time points; scans taken 
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prior to radiation therapy and the scans after radiation were used, both taken prior 
to surgery. Patient exclusion included those who presented with distant metastasis or 
those with more than a 120 day delay between chemoradiation and surgery, as well as 
those without survival data. For both cohorts, no histological exclusions were applied. 
The endpoint of the additional test set of trimodality patients was the prediction of 
pathological response, validated at the time of surgery. The residual tumor was classified 
as responders (pathological complete response n = 14, and microscopic residual disease 
n = 28) or gross residual disease (n = 47) based on surgical pathological reports. 

CT acquisition and image preprocessing. CTs were acquired according to standardized 
scanning protocols at our institution, using a GE “Lightspeed” CT scanner (GE Medical 
System, Milwaukee, WI, USA) for treatment, pre-treatment, and follow-up scans. The 
follow-up scans consisted of different axial spacing and a portion of the images are from 
PET-CT acquisitions. The input of the tumor image region is defined at the center of 
the identified seed point for the pre-treatment, and for the one, three, and six-month 
follow-up CT scans after definitive radiation therapy. The seed points were manually 
defined in 3D Slicer 4.8.125. Due to the variability in slice thicknesses and in-plane 
resolution, the CT voxels were interpolated to 1 × 1 × 1 mm3 using linear and nearest 
neighbor interpolation. In order to have a stable input for the proposed architecture, 
it was necessary to interpolate the imaging data to homogeneous resolution. This was 
performed as the slice thicknesses were a maximum of 5mm and thus the 2D input 
images are taken at a slice not further than 2mm away from a non-interpolated slice. 
The linear interpolation was used to avoid potential perturbations from more complex 
interpolation methods which involves and may be dependent on several parameters and 
longer computation time. The fine scale was chosen to maintain the details of the tumor.

The three axial slices of 50 × 50 mm2 centered on, 5 mm proximal to and 5 mm 
distal to the selected seed point were inputs to the model. 5 mm was the maximum 
slice thickness of the CT images. A transfer learning approach was applied using the 
pretrained ResNet CNN that was trained on natural RGB images. The three axial 
slices were used as input to the CNN network. Using three 2D slices gives the network 
information to learn from but keeps the number of features lower than a full 3D 
approach, as well as reduces GPU memory usage and training time as well as limits the 
overfitting. Image augmentation was performed on the training data, and involved image 
flipping, translation, rotation, and deformation, which is a conventional good practice 
and has shown to improve performance26. The same augmentation was performed on 
the pre-treatment and followup images, such that the network generates a mapping 
for the entire input series of images. The deformation was on the order of millimeters 
and did not noticeably change the morphology of the tumor or surrounding tissues. 
Neural network structure. The network structure was implemented in Python, using Keras 
with Tensorflow backend (Python 2.7, Keras 2.0.8, Tensorflow 1.3.0). The proposed 
network structure has a base ResNet convolutional neural network (CNN) trained 
on the ImageNet database containing over 14 million natural images (Figure 3). One 
CNN was defined for each time point input, such that an input with scans at three time 
points would involve input into three CNNs. The output of the pretrained network 
model was then input into recurrent layers with gated recurrent units (GRU), which 
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takes the time domain into account. To ensure the network was able to handle missing 
scans27,28, RNN algorithms were used which allowed for amalgamation of several time 
points and the ability to learn from samples with missed patient scans at a certain time 
points. The output of the pretrained network was masked to skip the time point when 
a scan was not available.Averaging and fully connected layers are then applied after 
the GRU with batch normalization29 and dropout30 after each fully connected layer to 
prevent overfitting. The final softmax layer allows for a binary classification output. To 
test a model without the input of follow-up scans the pre-treatment image alone was 
input into the proposed model, with the recurrent and average pooling layers replaced 
by a fully connected layer, as there was only one input time point. 

 overfitting. The final softmax layer allows for a binary classification output. To test a model 
 without the input of follow-up scans the pre-treatment image alone was input into the proposed 
 model, with the recurrent and average pooling layers replaced by a fully connected layer, as 
 there was only one input time point. 

 Figure 3:  Deep Learning Architectures. The neural  architecture includes ResNet convolutional 
 neural networks (CNN) merged with a recurrent neural network (RNN), and was trained on 
 baseline and follow-up scans. The input axial slices of 50 × 50 mm  2  centered on, 5 mm proximal 
 to and 5 mm distal to the selected seed point.  Deep learning networks are trained on natural 
 RGB images, and thus need 3 image slices for input. The outputs of each CNN model are input 
 into the RNN, with a gated recurrent unit (GRU) for time-varying inputs. Masking was performed 
 on certain inputs of the CNN so that the recurrent network takes missed scans into account. The 
 final softmax layer provides the prediction. 

 Transfer learning.  Weights trained with ImageNet,  a set of 14 million 2D color images, were 
 used for the ResNet  31  CNN and the additional weights  following the CNN were randomized at 
 initialization for transfer learning. Dataset A was randomly split 2:1 into training/tuning and 
 test.Training was performed with Monte Carlo cross validation, using 10 different splits (further 
 3:2 split of training: tuning) on 107 patients with class weight balancing for up to 300 epochs. 
 The model was evaluated on an independent test set of 72 patients, who were not used in the 
 training process.  The surviving fractions for training/tuning (n=107) and test sets (n=72) were 
 comparable  (  Table S1  )  . Only the pre-treatment image  was input into the proposed model, and 
 the recurrent and average pooling layers were replaced with a fully connected layer. 

 Statistical analysis.  Statistical analyses were performed  in Python version 2.7. All predictions 
 were evaluated on the independent test set of Dataset A for survival and for prognostic factors 
 after definitive radiation therapy.  The clinical endpoints included distant metastasis, progression 
 and locoregional recurrence as well as overall survival for one and two years following radiation 
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Figure 3. Deep Learning Architectures. The neural architecture includes ResNet convolutional neural networks (CNN) 
merged with a recurrent neural network (RNN), and was trained on baseline and follow-up scans. The input axial slices 
of 50 × 50 mm2 centered on, 5 mm proximal to and 5 mm distal to the selected seed point. Deep learning networks are 
trained on natural RGB images, and thus need 3 image slices for input. The outputs of each CNN model are input into 
the RNN, with a gated recurrent unit (GRU) for time-varying inputs. Masking was performed on certain inputs of the 
CNN so that the recurrent network takes missed scans into account. The final softmax layer provides the prediction.

Transfer learning. Weights trained with ImageNet, a set of 14 million 2D color images, 
were used for the ResNet31 CNN and the additional weights following the CNN were 
randomized at initialization for transfer learning. Dataset A was randomly split 2:1 into 
training/tuning and test.Training was performed with Monte Carlo cross validation, 
using 10 different splits (further 3:2 split of training: tuning) on 107 patients with class 
weight balancing for up to 300 epochs. The model was evaluated on an independent 
test set of 72 patients, who were not used in the training process. The surviving fractions 
for training/tuning (n=107) and test sets (n=72) were comparable (Table S1). Only the 
pre-treatment image was input into the proposed model, and the recurrent and average 
pooling layers were replaced with a fully connected layer. 



Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging

167

Ch
ap

te
r 

7

Statistical analysis. Statistical analyses were performed in Python version 2.7. All 
predictions were evaluated on the independent test set of Dataset A for survival and 
for prognostic factors after definitive radiation therapy. The clinical endpoints included 
distant metastasis, progression and locoregional recurrence as well as overall survival for 
one and two years following radiation therapy. The analyses were compared to a random 
forest clinical model with features of stage, gender, age, tumor grade, performance, 
smoking status and clinical tumor size (primary maximum axial diameter). 

Statistical differences between positive and negative survival groups in Dataset A were 
assessed using the area under the receiver operator characteristic curve (AUC), and the 
Wilcoxon rank sums test (also known as the Mann–Whitney U test). Prognostic and 
survival estimates were calculated using the Kaplan-Meier method between low and 
high mortality risk groups, stratified at the median prediction probability of the training 
set and controlled using a Log-Rank test. Hazard ratios were calculated through the Cox 
Proportional-Hazards Model. 

An additional test was performed on Dataset B, the trimodality cohort using the one-
year survival model from the definitive radiation cohort with two time points. Survival 
predictions were made from the one-year survival model trained on Dataset A. The 
model predictions were used to stratify the trimodality patients based on survival and 
tumor response to radiation therapy prior to surgery. The groups were assessed using 
their respective AUC, and were tested with the Wilcoxon rank sums test. This was 
compared to the volume change after radiation therapy and a random forest clinical 
model with the same features used for Dataset A.

Results

Clinical characteristics. To evaluate the value of deep learning based biomarkers to predict 
overall survival using patient images prior and post radiation therapy (Figure 1), a total 
of 268 stage III NSCLC patients with 739 CT scans were analyzed (Figure 2). Dataset 
A consisted of 179 patients treated with definitive radiation therapy and was used as a 
cohort to train and test deep learning biomarkers (Table S2). There was no significant 
difference between the patient parameters in the training and test sets of Dataset A 
(p>0.1, group summary values in Table S2). The patients were 52.8% females (median 
age of 63 years; age range 32 to 93 years) and were predominantly diagnosed as having 
stage IIIA (58.9%) NSCLC at the time of diagnosis, with 58.1% in the adenocarcinoma 
histology category. The median radiation dose was 66 Gy for the definitive radiation 
cohort (range 45 to 70 Gy, median follow-up of 31.4 months). Another cohort of 89 
patients treated with trimodality served as an external test set (Dataset B). The median 
radiation dose for the trimodality patients was lower, at 54 Gy (range 50 to 70 Gy, 
median follow-up of 37.1 months).

Deep Learning based prognostic biomarker development and evaluation. To develop deep 
learning based biomarkers for overall survival, distant metastasis, disease progression, 
and locoregional recurrence, training was performed using the discovery part of Dataset 
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A (Figure 2). To leverage the information from millions of photographic images, the 
ResNet CNN model was pre-trained on ImageNet and then applied to our dataset 
using transfer learning. The CNN extracted features of the CT images of each time 
point were fed into a recurrent network for longitudinal analysis. We observed that 
the baseline model with only pre-treatment scans demonstrated low performance for 
predicting two-year overall survival (AUC=0.58, p=0.3, Wilcoxon’s test). Improved 
performance to predict two-year overall survival was observed with the addition of each 
follow-up scan; at 1 month (AUC=0.64, p=0.04), 3 months (AUC=0.69, p=0.007), 
and 6 months (AUC=0.74, p=0.001) (Figure S2). We also observed the similar trend in 
performance for other clinical endpoints i.e. one-year, survival, metastasis, progression, 
and locoregional recurrence-free survival (Figure S3). A clinical model, incorporating 
stage, gender, age, tumor grade, performance, smoking status and clinical tumor size, 
did not yield a statistically significant prediction of survival (two-year survival AUC = 
0.51, p=0.93) or treatment response (Table S3).

 the addition of each follow-up scan; at 1 month (AUC=0.64, p=0.04), 3 months (AUC=0.69, 
 p=0.007), and 6 months (AUC=0.74, p=0.001)  (  Figure  S2  )  . We also observed the similar trend 
 in performance for other clinical endpoints i.e. one-year, survival, metastasis, progression, and 
 locoregional recurrence-free survival  (Figure S3)  .  A clinical model, incorporating stage, gender, 
 age, tumor grade, performance, smoking status and clinical tumor size, did not yield a 
 statistically significant prediction of survival (two-year survival AUC = 0.51, p=0.93) or treatment 
 response  (Table S3)  . 

 Figure 4:  Performance Deep Learning Biomarkers on  Validation Datasets. The deep learning 
 models were evaluated on an independent test set for performance. The two-year overall 
 survival Kaplan Meier curves were performed with median stratification (derived from the 
 training set) of the low and high mortality risk groups with no follow-up, or up to three follow-ups 
 at one, three and six months post treatment for Dataset A (72 definitive patients in the 
 independent test set, log-rank test p < 0.05 for > one follow-up). 

 Further survival analyses were performed with Kaplan-Meier estimates for low and high 
 mortality risk groups based on median stratification of patient prediction scores  (  Figure 4  )  . The 
 models for two-year overall survival yielded significant differences between the groups with 2 
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Figure 4. Performance Deep Learning Biomarkers on Validation Datasets. The deep learning models were evaluated on 
an independent test set for performance. The two-year overall survival Kaplan Meier curves were performed with median 
stratification (derived from the training set) of the low and high mortality risk groups with no follow-up, or up to three 
follow-ups at one, three and six months post treatment for Dataset A (72 definitive patients in the independent test set, 
log-rank test p < 0.05 for > one follow-up). 
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Further survival analyses were performed with Kaplan-Meier estimates for low and high 
mortality risk groups based on median stratification of patient prediction scores (Figure 
4). The models for two-year overall survival yielded significant differences between the 
groups with 2 (p=0.023, Log-Rank test) and 3 (p=0.027, Log-Rank test) follow-up 
scans. Comparable results were found for the following predictions with their respective 
Hazard ratios: one-year overall survival (6.16, 95% CI [2.17,17.44] p=0.0004), distant 
metastasis free (3.99, 95% CI [1.31,12.13] p=0.01), progression free (3.20, 95% CI 
[1.16,8.87] p=0.02) and no locoregional recurrence (2.74, 95% CI [1.18,6.34] p=0.02), 
each with significant differences at 3 follow-up time point scans.

Predicting Pathologic response. As an additional independent validation and to evaluate the 
relationship between delta imaging analysis and pathological response, the trimodality 
pre-radiation therapy and post-radiation therapy prior to surgery scans were input into 
the neural network model trained on dataset A. First for survival prediction evaluation, 
the model was tested on Dataset B. To match the number of input time points, the one-
year survival model with the pre-treatment and first follow-up at one month was used. 
The model significantly predicted distant metastasis, progression, and local regional 
recurrence (Table S4). Although, for overall survival there were a low number of events 
(30 of 89), the model was trending towards making a prediction for three-year overall 
survival in Dataset B. 

 (  p  =0.023, Log-Rank test) and 3 (  p  =0.027, Log-Rank test) follow-up scans. Comparable results 
 were found for the following predictions with their respective Hazard ratios: one-year overall 
 survival (6.16, 95% CI [2.17,17.44]  p  =0.0004), distant  metastasis free (3.99, 95% CI 
 [1.31,12.13]  p  =0.01), progression free (3.20, 95%  CI [1.16,8.87]  p  =0.02) and no locoregional 
 recurrence (2.74, 95% CI [1.18,6.34]  p  =0.02), each  with significant differences at 3 follow-up 
 time point scans. 

 Predicting Pathologic response.  As an additional independent  validation and to evaluate the 
 relationship between delta imaging analysis and pathological response, the trimodality 
 pre-radiation therapy and post-radiation therapy prior to surgery scans were input into the neural 
 network model trained on dataset A. First for survival prediction evaluation, the model was 
 tested on Dataset B. To match the number of input time points, the one-year survival model with 
 the pre-treatment and first follow-up at one month was used. The model significantly predicted 
 distant metastasis, progression, and local regional recurrence  (  Table S4  )  . Although, for overall 
 survival there were a low number of events (30 of 89), the model was trending towards making 
 a prediction for three-year overall survival in Dataset B. 

 Figure 5:  Pathological Response Prediction Validation.  Model probability and the change in 
 volume after radiation therapy was used for the prediction of pathologic response. The CNN 
 survival model significantly stratified response and gross residual disease in the second test set 
 Dataset B, comparable predictions were found with change in tumor volume, and the 
 combination of the two parameters (n=89, Wilcoxon p < 0.05). 

 The predictions of the network were then used to categorize pathological response 
 (Figure 5)  , and were found to significantly distinguish  between responders and gross residual 
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Figure 5. Pathological Response Prediction Validation. Model probability and the change in volume after radiation 
therapy was used for the prediction of pathologic response. The CNN survival model significantly stratified response and 
gross residual disease in the second test set Dataset B, comparable predictions were found with change in tumor volume, 
and the combination of the two parameters (n=89, Wilcoxon p < 0.05).
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The predictions of the network were then used to categorize pathological response 
(Figure 5), and were found to significantly distinguish between responders and gross 
residual disease, with an AUC of 0.65 (n=89, p=0.016, Wilcoxon’s test), which was 
similar to the change in volume (AUC of 0.65; n=89; p=0.017, Wilcoxon’s test). 
In order to investigate the additive performance, we built a combined model of the 
network probabilities and change in volume, which showed slightly higher performance 
(AUC of 0.67; n=89; p=0.006, Wilcoxon’s test). The CNN probabilities and changes 
in the primary tumor volume were significantly correlated (p=0.0002), although with 
a Spearman’s correlation value of 0.39. A clinical model, involving parameters of stage, 
gender, age, tumor grade, performance, smoking status and clinical tumor size, did not 
yield a statistically significant prediction for pathological response (p=0.42, Wilcoxon’s 
test). 

Discussion 

Tracking tumor evolution for prediction of survival and response after chemotherapy 
and radiation therapy can be critical to treatment assessment and adaptive treatment 
planning for improving patient outcomes. Conventionally, clinical parameters are used 
to determine treatment type and to predict outcome2, but this does not take into account 
phenotypic changes in the tumor. Medical imaging tracks this evolution of lesions non-
invasively and provides a method for tracking the same region longitudinally through 
time, providing additional tumor characteristics beyond those obtained through static 
images at a single time point5. Follow-up CT scans are already a part of the clinical 
workflow, providing additional information regarding the patient. Using deep-learning 
approaches for tumor assessment allows for the extraction of phenotypic changes 
without manual and/or semi-automated contours or qualitative visual interpretations, 
which are prone to inter-observer variability. Additionally, prognostic predictions can 
potentially aid in the assessment of patient outcome in clinical trials to assess response 
and eventually dynamically adapting therapy.

Using a combined image-based CNN and a time encompassing RNN, the neural 
network was able to make survival and prognostic predictions at one year and two years 
for overall survival. As expected, with an increase in the number of time points and the 
amount of imaging data available to the network, there was an increase in performance. 
Although the performance varied between the predictions, there was a consistent increase 
in AUC, due to the increase in signal from each additional image of the primary tumor 
and the changes between the scans with time. In this cohort, using a single pre-treatment 
scan was not successful in making a prediction of survival. However, previous work 
in the field of radiomics using engineered9,12,14,15 and deep learning10 approaches using 
pretreatment imaging data only, were able to predict the endpoint of their interest with 
the use of anatomical CT or functional PET data. For the cohorts in this study, there is a 
trend towards significance of the deep learning model with the pre-treatment time point 
only. Using larger cohorts could improve the predictive power of the imaging markers. 
The clinical model, which included the clinical tumor size (longest axial diameter), was 
also not predictive of survival or the other prognostic factors. 
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The neural network was able to stratify patients into low and high mortality risk groups, 
with significant difference in overall survival (Figure 4). This was also identified for the 
risk of locoregional recurrence with the input of two follow-up time points at around 
one and three months after the completion of definitive radiation therapy. The other 
outcomes, progression and distant metastasis needed the additional third follow-up 
at around 6 months for a significant stratification of the mortality risk groups. This 
may be due to a more defined set of early imaging phenotypes relating to survival and 
locoregional recurrence as compared to the other prognostic factors, or confounding 
phenotypes with regards to distant metastasis and progression, which the model cannot 
overcome unless the third follow-up is incorporated.

The two datasets within our study are inherently different as the cohorts are comprised 
of patients with different disease burdens and treatment modalities. The surgical patients 
are younger and healthier on average, with an earlier stage of disease, and well enough to 
tolerate surgery. It has been shown that the survival of surgical patients is dependent on 
the success of the surgical procedure and distant disease32, where definitive RT survival 
is determined by local control33. There was also a higher proportion of stage IIIA in 
patients who also underwent surgical resection (Dataset B) compared to definitive RT 
patients (Dataset A).

Despite these differences, the survival CNN models trained on Dataset A predicted 
surrogates of survival in Dataset B including distant metastasis, progression, and 
locoregional recurrence. It was trending towards predicting survival and this may be due 
to the inherent differences between the cohorts, as well as the low number of events in 
the cohort and sample size. There was also only one follow-up scan available for Dataset 
B, thus less information was provided to the survival model. Although the model was 
designed to overcome the immortal time bias, there could still be an effect. With more 
time points, fewer patients are alive to have the scan performed and thus decrease the 
ability to predict survival. 

Survival is associated with tumor pathological response34,35. Thus, we tested the 
relationship between the probabilities of the survival network model on similar stage 
III NSCLC patients who were in different treatment cohorts (definite radiation therapy 
and trimodality). Dataset B included the follow-up time point after radiation therapy 
and prior to surgery, for the prediction of response and for further validation of our 
model. This also serves as a test for generalizability in locally advanced NSCLC patients 
treated with different standard of care treatment protocols. To match the number of 
input time points, the one-year overall survival model with the pre-treatment and 
first follow-up at one month was used. The model was able to separate the pathologic 
responders from those with gross residual disease in the trimodality cohort. This was 
the case, even though the model development was completely blinded from this cohort. 

This prediction was compared to a well-known prediction of response, the primary 
tumor size. The change in tumor volume also predicted the response in this cohort with 
a similar performance. However, the two measures, model probability and delta volume, 
were only weakly correlated and the combined model showed a slight improvement in 
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performance. The proposed model was able to predict pathologic response in a different 
cohort, with only the image and a seed point for input. There is also a weak correlation 
between the values, which suggests that the image based neural network model is 
detecting radiographic characteristics other than tumor size.

The use of a CNN based network captures the tumor region and the immediate tumor 
environment. Previous techniques focused on providing the machine learning algorithm 
with accurate manual delineations or semi-automated methods which may not 
incorporate surrounding tissue36,37.CNN image input includes the boundary between 
the tumor and the normal tissue environment. This may provide additional indications 
for tumor response and infiltration to the surrounding tissue. Image augmentation 
was performed on the training tumor region, as conventional practice in the field of 
deep learning and biomedical image processing38, to improve performance and the 
small-scale deformations were applied to prevent overfitting39 on our relatively small 
training set. The use of conventional ResNet CNN for image characterization allows 
for the incorporation of pre-treatment weights on natural images26. This mediated the 
application of deep neural networks on medical images, with cohorts much smaller than 
the millions of samples used in other artificial intelligence solutions. 

The number of samples available for most radiological studies are not on the same 
order of magnitude as those used for deep learning applications. For instance, a facial 
recognition deep learning application was developed by training on 87 thousand images 
and testing on 5 thousand images40. However, transfer learning can be used to leverage 
common low-level CNN parameters from databases such as ImageNet, which contains 
over 14 million natural images26. It would be ideal to incorporate the whole tumor 
volume by using a network pre-trained on 3D radiographic images or 3D images in 
general, however the number of images available are not near the order of magnitude of 
which are in photographic images. If available, a model pre-trained in 3D CT images 
with samples on the order of thousands of images will likely be overfitted to the patient 
cohort, the institution, and the outcome the network was trained to predict. The use 
of transfer learning has demonstrated its effectiveness on improving the performance 
of lung nodule detection in CT images18. Our study contained a sample size not on 
the order of studies based on photographic images, but the current performance was 
made possible with the incorporation of pre-trained networks on ImageNet. Transfer 
learning may also be used to test the feasibility of clinically applicable utilities prior to 
the collection of a full cohort for analysis.

The incorporation of follow-up time points to capture dynamic tumor changes was 
key to the prediction of survival and tumor prognosis. This was feasible with the use of 
RNNs, which allowed for amalgamation of several time points and the ability to learn 
from samples with missed patient scans at a certain time point, which is inevitable in 
retrospective studies such as this one. Although this type of network has not been applied 
to medical images, similar network architectures have demonstrated success in image 
and time dependent analyses, as in video classification and description applications41. 
The model was structured to overcome the immortal time bias42. The pooling of CNN 
without the RNN has been previously applied43 , but in this case would result in bias 
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classifications for an event when the last patient scan is missed. The RNN was set to not 
learn from inputs where there is a missing scan44. GRU RNNs were used as they contain 
an update gate and a reset gate, which decides the weighting of the information passed 
on to the network output45. This captures the pertinent information from each time 
point for the survival and prognostic predictions. 

Previous work has demonstrated the feasibility of using CT imaging features to make 
associations and predictions in lung cancer7. Several studies used radiomics approaches 
involving manual delineation of the tumor volume and user-defined calculated features 
to make predictions of survival and pathological response12–15. Recent applications of 
deep learning on lung cancer have focused on lung nodule classification as benign or 
metastatic and they focus on a single scan for the model input. The study by Kumar et. 
al. depended on manual delineation of lung nodules with feature extraction using an 
autoencoder and classification with decision trees46. Hua et. al. used 2D region of the 
tumor lesion on the axial slice for classification, also performed at one time point47. Our 
study differs mainly in the incorporation of multiple time points in the prediction of 
survival and prognostic factors. For further validation, we also applied our developed 
model on a different cohort for the prediction of pathologic response, an important 
clinical factor. In comparison to previous studies, our model only takes a seed point and 
creates a 50 × 50 mm2 region around the seed point, which is used as input. In order 
to compute handcrafted radiomic features, an accurate tumor delineation is required9, 
which is susceptible to inter-reader segmentation variability and also is time-consuming. 
Recently, deep learning has been shown to have higher performance than conventional 
radiomics39. Our approach only required a seed point within a tumor and hence is 
more efficient and robust to manual inference. Additional clinical and pathological 
evaluations are not always available. Morphological parameters dependent on manual 
and semi-automated contours of the whole tumor volume or RECIST5 measurements 
are prone to inter-operator variability and can be costly to acquire. 

Ideally, after training on a larger diverse population and after extensive external 
validation and benchmarking with current clinical standards, quantitative prognostic 
prediction models can be implemented in the clinic48. There are several lung nodule 
detection algorithms available in the literature and with the aid of the pretreatment 
tumor contours routinely delineated by the radiation oncologist, the location of the 
tumor on the follow up images can be detected automatically49. The input of our model 
would simply be the bounding box surrounding the detected tumor and can be cropped 
automatically as well. The trained network can generate probabilities of prognosis within 
a few seconds, and thus would not hinder current clinical efficiency. The probabilities 
can then be presented to the physician along with other clinical images and measures, 
such as the RECIST criteria5, to aid in the process of patient assessment.

This proof of principle study has its limitations, one of which is the sample size of the 
study cohorts. Thus, a pre-trained CNN was used to improve predictive power. Using a 
deep-learning technique has its limitations. Previous associations were found for risk of 
distant metastases with the pre-treatment scan only, with machine learning techniques15. 
It has been demonstrated that machine learning based on engineered features out 
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performs deep learning with small sample sizes. Perhaps with a larger cohort, we could 
potentially achieve better performance deep learning. The probabilities are essentially 
calculated with a black box for a specific task, thus are less practical than engineered 
features, which could potentially be reused for other applications. Neural networks can 
be prone to overfitting, even with the techniques we have used to mitigate this29,30, 
thus images were resampled to a common pixel spacing. Our model used three 2D 
slices due to the predefined parameters necessary for transfer learning. However, a 3D 
image volume may better represent tumor biology and thus increase performance. Our 
survival models are based purely on the CT image and could potentially benefit from 
the incorporation of patient specific parameters, such as age, sex, histology, smoking 
cessation and radiation therapy parameters, with a larger cohort of patients. With these 
limitations, our deep learning model was able to make predictions of survival and 
perhaps with a larger dataset and finer more consistent axial spacing, higher and more 
clinically relevant performance may be feasible.

Deep learning is a flexible technique which has been successfully implemented in several 
fields16. However, the theory behind how the network functions has yet to be established50. 
The input and output of the model can be quite intuitive, but as suggested by the 
term, the hidden middle layers are not. It is therefore very challenging to determine the 
reasoning behind a network’s performance and whether certain parameters have a positive 
or negative impact. Unlike engineered features built to capture certain characteristics of 
the image, the interpretation of deep learning features can be ambiguous. To circumvent 
this in the field of image-based CNN, activation maps have been generated to capture 
highly weighted portions of the image with respect to the network’s predictions. This 
can be visualized in the form of heat maps, generated over the final convolutional layer. 
Also, how to incorporate the domain knowledge into these abstract features is a very 
important question that needs to be addressed. Further research in this direction could 
make these automatically learned feature representations more interpretable.

Conclusion

This study demonstrated the impact of deep learning on tumor phenotype tracking 
before and after definitive radiation therapy through pretreatment and CT follow-up 
scans. There were increases in performance of survival and prognosis prediction with 
incorporation of additional time points using CNN and RNN networks. This was 
compared to the performance of clinical factors, which were not significant. The survival 
neural network model could predict pathological response in a separate cohort with 
trimodality treatment after radiation therapy. Although the input of this model consisted 
of a single seed point in put at the center of the lesion, without the need for volumetric 
segmentation our model had comparable predictive power compared to tumor volume, 
acquired through time consuming manual contours. Non-invasive tracking of the 
tumor phenotype predicted survival, prognosis and pathological response, which can 
have potential clinical implications on adaptive and personalized therapy.
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Abstract

Background: Artificial intelligence (AI) and deep learning (DL) methods have 
demonstrated great potential in streamlining clinical tasks, including radiation treatment 
planning. However, most studies are confined to in silico validation in small internal 
cohorts, lacking data on real-world clinical utility.

Purpose: In this study, we developed a multifaceted strategy for the clinical validation 
of DL models for assisted and fully-automated segmentation of primary non-small cell 
lung cancer (NSCLC) tumors and involved lymph nodes in computed tomography 
(CT) images - a time intensive radiation treatment planning step with large variability 
among experts. 

Materials and Methods: CT images and expert segmentations were collected from 
eight independent internal and external sources totalling 2208 NSCLC patients: 787 
for model discovery and 1421 for validation. Our clinical validation strategy consisted of 
benchmarking, primary validation, functional validation, and end-user testing. Primary 
validation consisted of stepwise testing on increasingly external and heterogeneous 
datasets using volumetric (VD) and surface (SD) dice metrics among others. Functional 
validation explored model stability and accuracy in test-retest and phantom images, 
dosimetric evaluation, and failure mode analysis. End-user testing with eight radiation 
oncologists was carried out to test automated segmentations in a simulated clinical 
setting.

Results: Benchmarking: Models showed an improvement over the interobserver 
benchmark (P < .01), and were within the intraobserver benchmark. Primary Validation: 
Performance on internal data segmented by the same expert was VD 0.83 [0.82,0.85], 
within the interobserver benchmark. Performance on internal data segmented by other 
experts was VD 0.70 [0.67,0.73], worse than the interobserver benchmark (P < .0001). 
Performance on the RTOG-0617 clinical trial data was VD 0.71 [0.69,0.73], with 
similar results on diagnostic radiology datasets. Functional 

Validation: Models were found to be stable across separate images of the same subject, 
and yielded planning target volumes with equivalent radiation dose coverage compared 
to human experts. End-user testing: We found non-significant differences between de 
novo expert and AI-assisted segmentations for both VD and SD. AI-assistance led to a 
65% reduction in segmentation time (P < .0001) and 32% reduction in interobserver 
variability (P < .05).

Conclusion: We developed and validated a high performing automated segmentation 
model for a difficult clinical task with high interobserver variability. Our validation 
strategy may help assess clinical utility beyond the proof-of-concept stage, provide 
sufficient confidence in pursuing prospective clinical trials, and guide future research 
in this domain.
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Introduction

Lung cancer is the leading cause of cancer-related mortalities worldwide1, while being 
the second most commonly diagnosed cancer in both men and women2. Non-small-cell 
lung cancer (NSCLC) is the most common type of lung cancer, accounting for 85% 
of all diagnoses3. Radiation therapy (RT) plays a key role in treating NSCLC, with one 
fifth and one half of early and late stage patients, respectively, receiving this treatment 
modality4. RT is also highly versatile as it may be administered as a sole treatment, with 
systemic agents, precede or follow surgery, and play a role in palliation5. 

RT’s time- and cost-effectiveness is impacted by an expensive upfront investment: RT 
planning. RT planning is crucial in maximizing and minimizing radiation to cancer and 
normal cells, respectively. After a clinical decision for RT treatment and image acquisition, 
planning steps include image registration, target and adjacent organ segmentation, and 
dose distribution design among others. The manual segmentation of the target i.e. primary 
tumor and involved lymph nodes, is one of the most time consuming planning tasks 
performed by radiation oncologists6,7. This meticulous task requires interpreting images on 
a voxel-by-voxel basis to delineate the target volume, unlike diagnostic interpretation where 
reporting image-level findings is often sufficient8. The advent of advanced RT planning 
and delivery techniques such as intensity modulated RT (IMRT) and image guidance 
have enabled smaller margins and less dose to surrounding organs, but require higher 
segmentation accuracy9. Additionally, physicians’ personal style and preferences contribute 
to a large and well documented interobserver variability in target segmentation10–12, 
even in RT clinical trials with pre-specified parameters13. Finally, the accuracy of target 
segmentation can directly affect patient outcomes where under-segmentation can result 
in underdosing and decreased tumor control, while over-segmentation can result in 
overdosing and increased toxicity risks14,15. 

Multiple computer-aided tools have been proposed to help streamline RT planning6. 
For segmentation tasks, semi-automated approaches that incorporate knowledge from 
a collection of reference images, known as segmentation atlases, have had varying 
degrees of clinical utility16. Curating atlases requires substantial time and effort on the 
physician’s end, and the heterogeneity of its contents may diminish performance17. More 
recently, artificial intelligence (AI) methods - deep learning (DL) specifically - have been 
proposed as promising alternatives18. Unlike prior methods, DL algorithms are able 
to automatically learn feature representations from data, ultimately contributing to 
superior performance across multiple tasks19. The versatility of these algorithms has also 
led to widespread applications across imaging modalities, tissue types, and disease sites20. 
While many studies have explored the use of DL to automate RT target segmentation 
and improve its accuracy and consistency21, most remain at the proof-of-concept stage. 
As such, they are often confined to in silico validation in small internal cohorts. Within 
a sea of promising results, only a few efforts demonstrate the clinical impact of these 
automated systems22,23.

In this study, we present a generalizable clinical validation strategy for therapeutic AI 
algorithms with the aim of bridging early proof-of-concept studies and prospective 
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clinical trials, while providing suffi  cient confi dence in pursuing the latter. Th e strategy 
comprises four main components including developing benchmarks, performing 
primary and functional validation, as well as conducting end-user testing (Fig. 1). 

To demonstrate the application of this strategy, we present a study in clinically validating 
DL models for RT targeting. We performed an integrative analysis on eight independent 
datasets (2208 patients). Utilizing a discovery cohort of 787 patients, we developed 
multiple DL models for localizing and segmenting primary NSCLC tumors and involved 
lymph nodes in CT images. We then established an interobserver benchmark across six 
radiation oncologists, followed by an intraobserver benchmark across images segmented 
by the same radiation oncologist. Primary validation was carried out across 1421 patients 
including both internal and external cohorts, RT clinical trial data, as well as diagnostic 
radiology images. Functional validation was conducted across multiple datasets including 
test-retest and thorax phantom images. Th erein, we assessed the dosimetric impact of AI 
segmentations, measured their stability and accuracy, as well as identifi ed failure modes. 
Finally, in order to gauge the clinical utility of AI segmentations, we carried out end-user 
testing. In a simulated clinical setting, eight radiation oncologists from our institution 
were asked to perform the segmentation task de novo as well as rate and edit a provided 
AI segmentation. Taken together, these studies comprehensively assess the performance 
of the DL models both standalone and in their intended use setting for robust validation 
prior to prospective trials and ultimate clinical integration. 

while providing sufficient confidence in pursuing the latter. The strategy comprises four main
components including developing benchmarks, performing primary and functional validation, as
well as conducting end-user testing (Fig. 1).

To demonstrate the application of this strategy, we present a study in clinically validating
DL models for RT targeting. We performed an integrative analysis on eight independent
datasets (2208 patients). Utilizing a discovery cohort of 787 patients, we developed multiple DL
models for localizing and segmenting primary NSCLC tumors and involved lymph nodes in CT
images. We then established an interobserver benchmark across six radiation oncologists,
followed by an intraobserver benchmark across images segmented by the same radiation
oncologist. Primary validation was carried out across 1421 patients including both internal and
external cohorts, RT clinical trial data, as well as diagnostic radiology images. Functional
validation was conducted across multiple datasets including test-retest and thorax phantom
images. Therein, we assessed the dosimetric impact of AI segmentations, measured their
stability and accuracy, as well as identified failure modes. Finally, in order to gauge the clinical
utility of AI segmentations, we carried out end-user testing. In a simulated clinical setting, eight
radiation oncologists from our institution were asked to perform the segmentation task de novo
as well as rate and edit a provided AI segmentation. Taken together, these studies
comprehensively assess the performance of the DL models both standalone and in their
intended use setting for robust validation prior to prospective trials and ultimate clinical
integration.

Figure 1: Clinical validation framework and experimental setup.
We performed an integrative analysis on 8 independent datasets totaling 2208 patients to
assess the performance of deep learning models in localizing and segmenting primary NSCLC
tumors and involved lymph nodes in CT images. Two datasets, Maastro and Harvard-RT1, were
used to train fully convolutional neural network models to perform the tasks. Both interobserver
and intraobserver benchmarks were established. Primary model validation was carried out on
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Figure 1. Clinical validation framework and experimental setup. 
We performed an integrative analysis on 8 independent datasets totaling 2208 patients to assess the performance of 
deep learning models in localizing and segmenting primary NSCLC tumors and involved lymph nodes in CT images. 
Two datasets, Maastro and Harvard-RT1, were used to train fully convolutional neural network models to perform the 
tasks. Both interobserver and intraobserver benchmarks were established. Primary model validation was carried out on 
fi ve datasets, two of which are internal and three are external. Functional validation was also conducted to assess the 
dosimetric impact of AI segmentations and measure their stability and accuracy among others. Finally, end-user testing 
was carried out in a simulated clinical setting in order to gauge the clinical utility of AI segmentations when provided 
to physicians.
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Materials & Methods

Discovery
Th e following datasets were used for model development:

• Maastro: 422 patients (stages I-IIIB; 290 male, 132 female; mean age 68) with 
histologically proven NSCLC and treated with radiotherapy alone (n=196) or 
with chemo-radiation (n=226). Patients were treated at MAASTRO Clinic, 
Maastricht, Th e Netherlands between 2004 and 2010, and imaged with CT - 
with or without intravenous contrast. See Supplementary Table 8. Th is dataset 
is publicly available at https://wiki.cancerimagingarchive.net/display/Public/
NSCLC-Radiomics

• Harvard-RT1: 501 patients (stages IA-IV; 263 male, 236 female, 2 unspecifi ed; 
median age 73) with histologically proven NSCLC referred for radiotherapy 
between 2001 and 2015 at the Dana-Farber Cancer Institute and Brigham 
and Women’s Hospital, Boston, Massachusetts, US. Patients were imaged with 
CTwith or without intravenous contrast. Target volumes were delineated by a 
single radiation oncologist (R.H.M., R1). 269, 96, and 136 patients from this 
dataset were used for training, tuning, and testing the segmentation models 
respectively. Th e test set is identical to that used in a previously published tumor 
segmentation study8. See Supplementary Table 9.

Due to varying CT slice thickness across datasets (Supplementary Fig. 39), 
preprocessing involved resampling all data to a common voxel spacing of 1*1*3 mm3.
Th is was achieved using linear and nearest neighbor interpolations for CT images and 
segmentations, respectively. Images were normalized to a 0 to 1 range (−1,024 to 3,071 
Hounsfi eld units). Use of intravenous contrast in images was detected using a published 
algorithm24. During model training, data augmentation included transformations 
(scaling, rotating, mirroring), addition of gaussian noise and blur, as well as brightness 
and contrast adjustments. No testing-time augmentation was applied. Our assisted and 
automated pipelines consist of four 3D U-Net models - closely following the original 
implementation25,26 - for the localization and segmentation of lungs, primary tumor, as 
well as involved thoracic lymph nodes. Th e assisted pipeline requires a user-placed seed 
point within the tumor volume, while the automated pipeline is fully autonomous. 
For pipeline schematics, see supplementary Fig. 17. Each model comprised 2 blocks 
per level along both the encoder and decoder. Each block contained a convolutional 
layer with instance normalization27 and leaky ReLU activation28. Strided and transposed 
convolutions were used to downsample and upsample the images respectively. Number 
of feature maps started at 32 and was doubled and halved at every level along the 
encoder and decoder respectively. For model specifi cations, see Supplementary Table 6. 
For training, we used the stochastic gradient descent (SGD) optimizer with Nesterov 
momentum (µ = 0.99) and an initial learning rate of .01 (decay using polynomial 
policy29) for a maximum of 1000 epochs. Th e loss function used was dice coeffi  cient 
combined with cross entropy30. Pytorch31 was used for model development, and nnU-
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Net20 for hyper-parameter tuning. Multiple segmentation metrics were used for model 
validation (Supplementary Table 7).

Benchmarks
The interobserver benchmark was developed using the Multi-delineation dataset. 20 
patients (stages IA–IIIB; 12 male, 8 female; median age 67) with histologically proven 
NSCLC referred for radiotherapy at Maastro Clinic, Maastricht, The Netherlands32. 
Manual tumor delineations were performed on pre-treatment CT images by five 
radiation oncologists: three specializing in thoracic oncology and two residents. Tumor 
volumes were also delineated by R1 to create the interobserver benchmark for a total 
of six experts. See Supplementary Fig. 43 and Supplementary Table 10. This dataset 
is publicly available at https://wiki.cancerimagingarchive.net/display/Public/NSCLC-
Radiomics-Interobserver1

The intraobserver benchmark was developed using 21 randomly sampled patients from 
the Harvard-RT1 test set. R.H.M. performed the segmentation task twice with a three 
months washout period in between. 

Primary Validation
In addition to testing on the Harvard-RT1 test set, further validation was performed on 
the following increasingly external datasets:

• Harvard-RT2: 387 patients (stages IA-IV; 165 male, 222 female; median age 69) 
with histologically proven NSCLC referred for radiotherapy between 2011 and 
2017 at the Dana-Farber Cancer Institute and Brigham and Women’s Hospital, 
Boston, Massachusetts, US. Patients were imaged with CT with or without 
intravenous contrast. Tumor volumes were delineated by multiple physicians. See 
Supplementary Fig. 11 and Supplementary Table 11.

• RTOG-0617: 403 NSCLC patients (stages IIIA-IIIB; 223 male, 155 
female, 25 unspecified; median age 64) from the clinical trial RTOG-1617 
(NCT00533949)33,34, “High-Dose or Standard-Dose Radiation Therapy and 
Chemotherapy With or Without Cetuximab in Treating Patients With Newly 
Diagnosed Stage III Non-Small Cell Lung Cancer That Cannot Be Removed 
by Surgery”. Patients were treated between 2007 and 2011 at 185 institutions 
across the USA and Canada. Thoracic CT data were obtained within 6 weeks 
of trial registration. See Supplementary Fig. 44 and Supplementary Table 12. 
This dataset is publicly available at https://wiki.cancerimagingarchive.net/pages/
viewpage.action?pageId=33948334

• NSCLC-radiogenomics: 142 (total n=162) early stage NSCLC patients 
(pathological stages T1-T3, N0-N2, M0-M1; 124 male, 38 female; mean age 68) 
referred for surgical treatment at Stanford University School of Medicine (n=69) 
and Palo Alto Veterans Affairs Healthcare System (n=93)35 in California, US. 
Patients were treated between 2008 and 2012. Data consisted of preoperative CT 
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images with automated tumor segmentations that were edited and reviewed by 
two thoracic radiologists. See Supplementary Fig. 45 and Supplementary Table 
13. This dataset is publicly available at https://wiki.cancerimagingarchive.net/
display/Public/NSCLC+Radiogenomics

• Lung-PET-CT-Dx: 307 NSCLC patients (clinical stages T1-T4, N0-N3, M0-
M3; 163 male, 144 female; mean age 61) imaged at the Second Affiliated Hospital 
of Harbin Medical University, Harbin, Heilongjiang Province, China36. Data 
consisted of CT images, together with PET/CT images for a subset of patients. 
Tumor location was annotated using per-slice bounding rectangles by five 
academic thoracic radiologists with expertise in lung cancer. See Supplementary 
Fig. 46 and Supplementary Table 14. This dataset is publicly available at https://
wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70224216

Functional Validation
Data utilized in the dosimetric analysis is a random quartile-based 28 patient subset 
of the RTOG-0617 clinical trial dataset (Supplementary Fig. 18). While the models 
described herein predict the gross tumor volume (GTV), it is the planning target volume 
(PTV) that accounts for uncertainty and is ultimately used for dose calculation in RT 
planning. AI PTVs were generated from AI GTV as follows. First, a uniform expansion 
of 5mm was applied to the GTV to generate the clinical target volume (CTV). This 
represents the lower bound of the 5mm to 10mm range specified in RTOG-0617 
clinical trial protocol37. The CTV was further uniformly expanded by the mean margin 
between CTV and PTV segmentation used for each patient in the trial independently. 
Statistics of this margin were min=4.6mm, mean=8.1mm, max=12.1mm. The same 
treatment plans and radiation dose distributions used in the trial were utilized. Dose 
volume histograms and other dose calculations were performed in 3Dslicer38 using the 
SlicerRT extension39.

Test-retest stability was assessed using RIDER. 26 (total n=32) NSCLC patients 
(primary tumor >=1cm; 16 men, 16 women; mean age 62) each of whom underwent 
two CT scans of the chest within 15 minutes40. Images were acquired between January 
2007 and September 2007 at the Memorial Sloan-Kettering Cancer Center, New York, 
USA. Tumor segmentations were initially performed by an automated segmentation 
algorithm and inspected by two thoracic radiologists. See Supplementary Fig. 47. This 
dataset is publicly available at https://wiki.cancerimagingarchive.net/display/Public/
RIDER+Lung+CT. Additionally, we tested the assisted models’ stability as a function of 
variation in input data by simulating multiple readers’ placement of seed points (n=50 
simulations). Stability across 3D and 4D CT data was tested in Harvard-RT2 comprising 
n=186 single timeframe 3D CT with GTV annotations, against n=201 multi timeframe 
4DCT with internal gross target volume (iGTV) annotations. A GTV was predicted at 
each of the 10 timeframes and combined to produce an iGTV that compensates for the 
tumor’s physiological movements.

Model accuracy was assessed using a CT study of a thorax phantom containing 12 
synthetic lesions (10 and 20 mm in effective diameter) inserted into the lungs - 6 
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lesions per lung41,42. The phantom was scanned at Columbia University Medical 
Center, NewYork, USA. See imaging information Supplementary Table 15. This 
dataset is publicly available at https://wiki.cancerimagingarchive.net/display/Public/
Lung+Phantom

End-user testing
We recruited eight radiation oncologists from our institution with varying degrees 
of experience (three attendings and five residents, Supplementary Table 2 and 3). All 
readers consented to the testing. Data used in this analysis was a random quartile-based 
28 patient subset of the RTOG-0617 clinical trial dataset, which was not used in model 
development. This subset was further divided into two random quartile-based groups 
of 14 patients each (Supplementary Fig. 18). For group A patients, readers were asked 
to perform the primary tumor and lymph node segmentation task de novo. For group B 
patients, readers were asked to rate and edit a provided segmentation blinded to its source. 
For 10 patients, automated segmentations from the assisted pipeline were provided (AI-
assisted). For 4 patients, clinical segmentations from the RTOG-0617 clinical trial were 
provided (expert-assisted, Supplementary Fig. 48, Supplementary Table 4). The testing 
was conducted in a simulated clinical setting. A workflow was set up in MIM®, the 
software typically used for this task at our institution (Supplementary Fig. 49). Readers 
were provided the following information for each patient: age, gender, Zubrod score, 
histology, stage, and primary tumor lung lobe. All answers to survey questions were 
collected before, during, and after each case within the same software environment. 
Time for task completion was also recorded automatically in the background. 

Statistics
All statistical tests conducted were non-parametric, with a two-tailed P < .05 indicating 
significance. For two dependent groups, the Wilcoxon matched-pairs signed rank test 
was used. For two independent groups, the Mann-Whitney U rank test was used. For 
three or more independent groups, the Kruskal-Wallis H-test was used. For measuring 
correlation between two groups, the Spearman rank-order correlation coefficient was 
used. 

Results

Discovery
DL models were developed to localize and segment primary NSCLC tumors and involved 
thoracic lymph nodes in pretreatment CT images, either assisted by a user-placed seed 
point or fully automated (Methods, Supplementary Fig. 17). Models were first trained 
using the Maastro dataset, then fine tuned using 365 patients from Harvard-RT1 with 
tumor segmentations performed by the main expert radiation oncologist from this study 
(R.H.M., R1). Multiple segmentation metrics were used to evaluate model performance 
(Methods). The most common of these, namely volumetric dice (VD) and surface dice 
(SD), are reported hereafter (median [95%CI]).
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Benchmarks
Interobserver benchmark was VD 0.83 [0.82,0.84]; SD 0.72 [0.7,0.75] (Supplementary 
Fig. 1). AI vs R1 yielded VD 0.91 [0.84,0.92]; SD 0.86 [0.74,0.91], a significant 
improvement over the benchmark with VD, P < .01; SD, P < .001 (Supplementary 
Fig. 2 and 3). Additionally, AI vs R1 was found to be inversely correlated with the 
interquartile range of variability among all 6 readers, Spearman R -0.74, P < .001 
(Supplementary Fig. 4). With AI segmentations as reference, non-significant differences 
were detected between residents and attendings (Supplementary Fig. 5).

Intraobserver benchmark was VD 0.88 [0.84,0.9]; SD 0.85 [0.81,0.93] (Supplementary 
Fig. 6). AI vs R1’s first read yielded VD 0.86 [0.83,0.87]; SD 0.79 [0.74,0.88], with 
similar results for the second read. Non-significant differences were observed when both 
results were compared to the benchmark (Supplementary Fig. 7 and 8). 

Primary validation
First, we tested on 136 patients held out from the internal Harvard-RT1 dataset, which 
were also segmented by R1. Assisted primary tumor segmentation results were VD 0.86 
[0.85,0.87]; SD 0.83 [0.80,0.85], a significant improvement over previously published 
contest results on the same data8 (P < .0001, Supplementary Fig. 10). Results for primary 
tumor and lymph node segmentation were VD 0.83 [0.82,0.85]; SD 0.79 [0.75,0.81] 
for the assisted model and VD 0.82 [0.80,0.83]; SD 0.74 [0.71,0.76] for the automated 
model (2% localization failure rate, Supplementary Table 1, Fig. 2).

Second, we tested on the internal Harvard-RT2 dataset comprising segmentations by 
other radiation oncologists in our institution. Results for primary tumor and lymph 
node segmentation were VD 0.70 [0.67,0.73]; SD 0.50 [0.47,0.54] for the assisted 
model and VD 0.63 [0.61,0.67]; SD 0.44 [0.40,0.48] for the automated model (10% 
localization failure rate, Supplementary Table 1, Fig. 2). 

Third, we tested on data collected as part of the RTOG-0617 clinical trial34,37,43. Results 
for primary tumor and lymph node segmentation were VD 0.71 [0.69,0.73]; SD 0.47 
[0.45,0.49] for the assisted model and VD 0.69 [0.67,0.72]; SD 0.44 [0.42,0.47] for the 
automated model (0.5% localization failure rate, Supplementary Table 1, Fig. 2). Non-
significant differences in performance were observed between trial arms: high vs low 
radiation dose (Supplementary Fig. 13), as well as between RT treatment techniques: 
3D conformal (3D-CRT) vs IMRT (Supplementary Fig. 14).

Finally, we tested on two diagnostic datasets. For NSCLC-radiogenomics35, tumor 
segmentation results were VD 0.68 [0.63,0.73]; SD 0.61 [0.54,0.74] for the assisted 
model and VD 0.64 [0.59,0.69]; SD 0.55 [0.47,0.66] for the automated model (6% 
localization failure rate, Supplementary Table 1, Fig. 2). Non-significant differences were 
observed between lung lobes (Supplementary Fig. 15). For Lung-PET-CT-Dx dataset36, 
results were VD 0.66 [0.64,0.68]; SD 0.31 [0.29,0.34] for the assisted model and VD 
0.61 [0.59,0.64]; SD 0.27 [0.24,0.29] for the automated model (9% localization failure 
rate, Supplementary Table 1, Fig. 2).
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 Figure 2: Primary validation results and comparison with benchmarks. 
 Deep learning model performance in localizing and segmenting primary NSCLC tumors and 
 involved lymph nodes, as validated on five increasingly external datasets using the volumetric 
 dice (VD) metric. First, the intraobserver and interobserver benchmarks were established, 
 depicted here in purple and red respectively. Validation first started on Harvard-RT1, the dataset 
 that most resembles that training data i.e. from the same institution and annotated by the same 
 physician. Next is Harvard-RT2 also from the same institution but annotated by other 
 physicians. This was followed by validation on RTOG-0617, a clinical trial dataset collected from 
 185 institutions. Final validation was conducted on diagnostic data annotated by radiologists. 
 Blue box plots depict the seed point assisted models, while orange box plots depict the fully 
 automated models. The Mann-Whitney U rank test was used, with a two-tailed  P  < .05 indicating 
 significance. See Supplementary Fig. 9 for other segmentation metrics including surface dice 
 (SD) and precision. 

 Functional validation 
 To assess changes in radiation dose delivered as a result of using AI-generated segmentations 
 in RT treatment planning, we performed a dosimetric analysis  (Supplementary Fig. 19)  . 
 Non-significant differences were observed between the clinical and AI PTV segmentations 
 across two common dose coverage metrics: V95, or percent target volume that received at least 
 95% of the prescription dose, and D95, or dose covering 95% of the target volume 
 (Supplementary Fig. 20)  . 

 Model stability across two separate CT scans of the same subject were assessed using 
 the RIDER dataset  40  (Supplementary Fig. 23)  . AI vs  radiologist on the first scan was 
 non-significantly different from the same comparison on the second scan (Supplementary Fig. 
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Figure 2. Primary validation results and comparison with benchmarks.
Deep learning model performance in localizing and segmenting primary NSCLC tumors and involved lymph nodes, 
as validated on five increasingly external datasets using the volumetric dice (VD) metric. First, the intraobserver and 
interobserver benchmarks were established, depicted here in purple and red respectively. Validation first started on 
Harvard-RT1, the dataset that most resembles that training data i.e. from the same institution and annotated by the same 
physician. Next is Harvard-RT2 also from the same institution but annotated by other physicians. This was followed 
by validation on RTOG-0617, a clinical trial dataset collected from 185 institutions. Final validation was conducted 
on diagnostic data annotated by radiologists. Blue box plots depict the seed point assisted models, while orange box 
plots depict the fully automated models. The Mann-Whitney U rank test was used, with a two-tailed P < .05 indicating 
significance. See Supplementary Fig. 9 for other segmentation metrics including surface dice (SD) and precision.

Functional validation
To assess changes in radiation dose delivered as a result of using AI-generated 
segmentations in RT treatment planning, we performed a dosimetric analysis 
(Supplementary Fig. 19). Non-significant differences were observed between the 
clinical and AI PTV segmentations across two common dose coverage metrics: V95, or 
percent target volume that received at least 95% of the prescription dose, and D95, or 
dose covering 95% of the target volume (Supplementary Fig. 20).

Model stability across two separate CT scans of the same subject were assessed using the 
RIDER dataset40 (Supplementary Fig. 23). AI vs radiologist on the first scan was non-
significantly different from the same comparison on the second scan (Supplementary Fig. 
24). Radiologists’ variation in tumor volume across the two scans was non-significantly 
different from that of the AI models (Supplementary Fig. 25). Additionally, we tested 
the assisted models’ stability as a function of variation in seed point placement. Median 
model predictions showed high stability with an interquartile range of 0.02 for both 
VD and SD (Supplementary Fig. 26). With regards to stability across CT timeframes, 
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non-significant differences in performance were observed between 3D and 4D input 
CT data for both the assisted and automated models (Supplementary Fig. 12).

 24). Radiologists' variation in tumor volume across the two scans was non-significantly different 
 from that of the AI models  (Supplementary Fig. 25)  .  Additionally, we tested the assisted 
 models' stability as a function of variation in seed point placement. Median model predictions 
 showed high stability with an interquartile range of 0.02 for both VD and SD  (Supplementary 
 Fig. 26)  . With regards to stability across CT timeframes,  non-significant differences in 
 performance were observed between 3D and 4D input CT data for both the assisted and 
 automated models  (Supplementary Fig. 12)  . 

 Figure 3: Examples of model failure modes 
 10 representative examples of model failures for both under- and over-segmentation scenarios 
 (5 cases each). Cases are ordered left to right in increasing model performance metrics. 

 To gauge model accuracy, we tested on a CT scan of a thorax phantom containing 12 
 nodules of known volume  42  (Supplementary Fig. 27).  On average, models were found to 
 underestimate nodule volume by 0.4cc, or 12% of known volume. Three previously published 
 models also showed a similar trend when tested on the same data  41  (Supplementary Fig. 28)  . 

 Finally, model failure modes were examined  (Fig. 3)  through review by clinical experts. 
 Examples of these included missing thoracic nodal stations originally undersampled in the 
 discovery data e.g. supraclavicular nodes  (Supplementary  Fig. 42)  , over-segmentation into 
 pericardium and collapsed lungs, as well as susceptibility to motion artifacts around the 
 diaphragm. 
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Figure 3. Examples of model failure modes
10 representative examples of model failures for both under- and over-segmentation scenarios (5 cases each). Cases are 
ordered left to right in increasing model performance metrics.

To gauge model accuracy, we tested on a CT scan of a thorax phantom containing 
12 nodules of known volume42 (Supplementary Fig. 27). On average, models were 
found to underestimate nodule volume by 0.4cc, or 12% of known volume. Three 
previously published models also showed a similar trend when tested on the same data41 
(Supplementary Fig. 28).

Finally, model failure modes were examined (Fig. 3) through review by clinical experts. 
Examples of these included missing thoracic nodal stations originally undersampled 
in the discovery data e.g. supraclavicular nodes (Supplementary Fig. 42), over-
segmentation into pericardium and collapsed lungs, as well as susceptibility to motion 
artifacts around the diaphragm.
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 Figure 4: Nine representative examples from the end-user testing. 
 Nine examples from the de novo, expert-assisted  (clinical  segmentation provided)  , and 
 AI-assisted (  AI-generated  segmentation provided) segmentations  (three examples each). 

 End-user testing 
 We conducted  end-user testing  where eight readers  were asked to perform the segmentation 
 task  de novo  , or rate and edit a provided segmentation  blinded to its source (Fig. 4, Methods). 
 Provided segmentations were either clinical (expert-assisted) or AI-generated (AI-assisted). 
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Figure 4. Nine representative examples from the end-user testing.
Nine examples from the de novo, expert-assisted (clinical segmentation provided), and AI-assisted (AI-generated 
segmentation provided) segmentations (three examples each). 

End-user testing
We conducted end-user testing where eight readers were asked to perform the segmentation 
task de novo, or rate and edit a provided segmentation blinded to its source (Fig. 4, 
Methods). Provided segmentations were either clinical (expert-assisted) or AI-generated 
(AI-assisted). Clinical (RTOG-0617 clinical trial), AI, and our readers’ segmentation 
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are shown in red, blue, and green respectively. Depicted scores are calculated between 
clinical and AI segmentations. VD=volumetric dice, SD=surface dice.

Clinical (RTOG-0617 clinical trial), AI, and our readers' segmentation are shown in red, blue,
and green respectively. Depicted scores are calculated between clinical and AI segmentations.
VD=volumetric dice, SD=surface dice.

Figure 5: Results from the end-user testing.
Panel A reports the volumetric dice score between clinical trial segmentations and each of de
novo, expert-assisted (clinical segmentation provided), and AI-assisted (AI-generated
segmentation provided) segmentations. See Supplementary Fig. 29 for surface dice. Panel B
reports answers to qualitative questions asked to readers during the end-user testing. Panel C
reports the time needed to complete the segmentation task. The Mann-Whitney U rank test was
used, with a two-tailed P < .05 indicating significance.

Using clinical segmentations as reference, we found non-significant differences between
de novo VD 0.7 [0.64,0.75]; SD 0.43 [0.4,0.48] and AI-assisted VD 0.69 [0.65,0.75]; SD 0.38
[0.36,0.53] segmentations (Fig. 5A, Supplementary Fig. 29). Similar results were obtained
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Figure 5. Results from the end-user testing.
Panel A reports the volumetric dice score between clinical trial segmentations and each of de novo, expert-assisted (clinical 
segmentation provided), and AI-assisted (AI-generated segmentation provided) segmentations. See Supplementary Fig. 
29 for surface dice. Panel B reports answers to qualitative questions asked to readers during the end-user testing. Panel C 
reports the time needed to complete the segmentation task. Th e Mann-Whitney U rank test was used, with a two-tailed 
P < .05 indicating signifi cance. 
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Using clinical segmentations as reference, we found non-significant differences between 
de novo VD 0.7 [0.64,0.75]; SD 0.43 [0.4,0.48] and AI-assisted VD 0.69 [0.65,0.75]; SD 
0.38 [0.36,0.53] segmentations (Fig. 5A, Supplementary Fig. 29). Similar results were 
obtained across individual readers (Supplementary Fig. 30 and 31). When compared 
to the de novo median segmentation time of 15.5 minutes, expert-assistance led to an 
non-significant 24% reduction (11.7 minutes) while AI-assistance led to a significant 
65% reduction (5.4 minutes, P < .0001, Fig. 5C). Non-significant differences were 
detected between de novo segmentations by residents and attendings (Supplementary 
Fig. 32). When compared to the de novo interquartile range of interobserver variability, 
AI-assistance led to a non-significant 53% reduction for VD and a significant 32% 
reduction for SD (P < .05, Supplementary Fig. 33 and 34). 

Qualitative data were also collected during the testing. For 96% of AI segmentations, 
readers agreed that the provided segmentations improved their efficiency. 74% of AI 
segmentations failed a Turing test-like setup as they were identified as being AI-generated 
(Fig. 5B). 79% of AI segmentations were rated as “acceptable with minor modifications” 
by readers. Finally, we found that VD and SD metrics did not correlate with the time 
required to edit AI segmentations, nor did they significantly stratify subgroups based on 
qualitative measures including segmentation rating and perceived task difficulty (Fig. 
6A).

Discussion

In this study, we developed a multifaceted strategy for the clinical validation of DL 
models for RT targeting. Beyond establishing inter- and intraobserver benchmarks, we 
performed multi-tiered validation on internal and external datasets including clinical 
trial and diagnostic radiology data. We also carried out additional dosimetric validation 
and measured the models’ stability and accuracy. Finally, we conducted end-user testing 
to measure clinical utility and physician acceptance.

Clinical validation strategy
Our validation strategy is aimed at closing the translational gap that falls in between 
early in silico validation and larger scale prospective clinical trials44,45. This strategy may 
provide the high levels of confidence needed to pursue AI clinical trials in medicine46, 
uncover model weaknesses that would have been otherwise overlooked, generate 
preliminary data on human factors given our incomplete understanding of this area47, 
as well as help quantify the time and effort needed to bring AI outputs to clinically 
acceptable levels. 

Herein, we demonstrated the application of this strategy across four components (Fig. 
1). A. Benchmarks: Developing clinical benchmarks to understand the current standard of 
care. This is reflected in our work on quantifying inter and intraobserver variability. B. 
Primary Validation: Validation in large external cohorts to understand models’ generalizability 
profile. We conducted our study using large heterogeneous multi-institutional data 
(n=2208) from across multiple geographies. 60% (n=1320) of our data is publicly 
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available48, allowing for future improvements on the same data. In addition to testing on 
pretreatment CT used in RT planning, we also opted to test on diagnostic CT to better 
understand the models’ utility in diff erent clinical contexts. C. Functional Validation: 
Studying the models’ impact on related clinical tasks and downstream clinical endpoints. 
Th is is refl ected in our experiments to better understand the dosimetric impact of AI-
generated segmentations, and measure model stability and accuracy. Finally, D. End-user 
testing in simulated clinical settings beyond in silico testing. Our end-user tests aimed at 
understanding real-world clinical performance of the model, physicians’ interactions with 
AI outputs, as well as overall satisfaction. Th is evaluation of human-machine interaction 
highlights the importance of studying clinical AI models under their intended use in the 
clinic, which is most commonly decision support and not full automation49.

Finally, D. End-user testing in simulated clinical settings beyond in silico testing. Our end-user
tests aimed at understanding real-world clinical performance of the model, physicians'
interactions with AI outputs, as well as overall satisfaction. This evaluation of human-machine
interaction highlights the importance of studying clinical AI models under their intended use in
the clinic, which is most commonly decision support and not full automation49.

Figure 6. Analysis of segmentation metrics.
Panel A reports the correlation of segmentation metrics (volumetric dice in blue and surface dice
in orange) with time needed to edit AI segmentations, qualitative rating provided by readers, as
well as the perceived challenge. Data used for this analysis is from the end-user testing when
an AI segmentation is provided to readers (n=80, 10 cases * 8 readers). The Mann-Whitney U
rank test was used, with a two-tailed P < .05 indicating significance. Panel B reports the
correlation of segmentation metrics (left, volumetric dice and right, surface dice) with tumor
volume (displayed on log scale). We used all validation datasets for this analysis (n=1421). For
comparisons between tumor volume and other metrics (precision, recall, jaccard, and
segmentation score), see Supplementary Fig. 38. For correlation results on a per dataset basis,
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Figure 6. Analysis of segmentation metrics.
Panel A reports the correlation of segmentation metrics (volumetric dice in blue and surface dice in orange) with time 
needed to edit AI segmentations, qualitative rating provided by readers, as well as the perceived challenge. Data used for 
this analysis is from the end-user testing when an AI segmentation is provided to readers (n=80, 10 cases * 8 readers). Th e 
Mann-Whitney U rank test was used, with a two-tailed P < .05 indicating signifi cance. Panel B reports the correlation of 
segmentation metrics (left, volumetric dice and right, surface dice) with tumor volume (displayed on log scale). We used 
all validation datasets for this analysis (n=1421). For comparisons between tumor volume and other metrics (precision, 
recall, jaccard, and segmentation score), see Supplementary Fig. 38. For correlation results on a per dataset basis, see 
Supplementary Table 5. Th e Spearman rank-order correlation coeffi  cient was used for measuring correlation between 
the two groups.
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This effort builds upon a large body of DL applications in medical imaging generally19, 
and RT specifically6. Image segmentation is a major component of the RT treatment 
planning workflow, and deep learning has shown superior performance over prior 
state of the art methods50,51. Recent studies have described DL systems for organ 
segmentation in head & neck52,53, renal54, thoracic54, prostate55, and liver56 cancer RT 
patients. Other efforts have explored tumor segmentation for nasopharyngeal57, lung8, 
and oropharyngeal58 cancers. Most studies remain at the proof of concept stage, often 
validated in <100 samples, and lack external validation. Additionally, most are confined 
to in silico testing with only a few evaluating model performance in clinical settings22,23,55.

Benchmarks, validation, and end-user testing
Our benchmarking results underscore the model’s ability in identifying challenging 
cases with large interobserver variability. While our study showed no difference in 
performance between residents and attending physicians, further work is needed to 
understand the impact of training level on human-AI interaction and the potential of 
such models to augment physician training and standardize RT planning.

Testing on multiple external datasets of varying characteristics is crucial in understanding 
a given model’s generalizability profile. Our tiered validation process starts with a 
single-reader internal test data (Harvard-RT1) that most resembles the training data, 
and expands to multi-reader clinical trial data as well as diagnostic radiology data. 
The performance drop at the multi-reader internal test data (Harvard-RT2) in the 
context of its relative stability on subsequent increasingly external datasets suggest that 
segmentation variability may be a function of treating physician style or preference. 
Results on 4DCT data within the Harvard-RT2 dataset imply the models’ relevance 
toward modern imaging practices.

Studies have shown significant differences in protocol compliances of target and organ 
segmentation in RT clinical trials59. Results on the RTOG-0617 clinical trial dataset 
suggest that automated target segmentation models may be used as quality assurance 
tools for these trials. AI Models can detect and flag subpar segmentations during the 
trial, thereby acting as a triage mechanism for the time-consuming and expensive human 
peer review60.

Results on the diagnostic datasets highlight known differences between radiologists 
(anatomical knowledge) and radiation oncologists (therapeutic goals) in defining tumor 
boundaries (Supplementary Fig. 16 and 35). These differences are likely synergistic, 
and emphasize the importance of radiologist input in RT planning61,62, especially when 
professional overlap is inevitable e.g. post-operative RT63. This also stimulates further 
discussions around the “off-label” use of AI where applications developed within one 
speciality are deployed in another.

In terms of metrics that best assess AI-generated segmentations, there is no consensus 
thus far64. Our functional validation studies underscore the importance of evaluating 
AI-generated RT segmentations beyond the common scope of geometric measures65. 
Similar to prior studies66,67, our dosimetric analysis showed no correlation between 



Clinical Validation of  Deep Learning Algorithms for Lung Cancer Radiotherapy Targeting

197

Ch
ap

te
r 

8

geometric and dosimetric measures (Supplementary Fig. 36). We also found that 
geometric measures may fail to accurately mirror time savings and other qualitative 
measures (Fig. 6A). Our results also highlight undesired correlations between metrics 
and tumor volume (Fig. 6B, Supplementary Fig. 37), and echo VD’s bias towards larger 
tumors52,68. As VD is the most common metric used in medical image segmentation69, 
there is an unmet need for new metrics that combine qualitative physician evaluation 
with geometric, dosimetric, and time-related measures to accurately reflect meaningful 
clinical outcomes64,70,71.

A closer look into model failure modes (Fig. 3) may help guide implementation. 
Such modes may be automatically detected and flagged to the physician together with 
a warning that model outputs may be compromised, thereby bringing much needed 
trust into automated systems72. The co-development of both assisted and automated 
models provides the flexibility to address a variety of clinical scenarios. In terms of 
tumor localization failures, our models failed in 87 (6%) of the 1421 validation cases 
(Supplementary Table 1), thereby requiring fall back onto the seed point assisted 
models. Alternatively, future models may be augmented through the automated 
extraction of rough anatomic tumor location from other existing RT data sources such 
as clinical notes73. 

The exact effects of imaging contrast on model performance remain unclear. This is 
especially true as our models significantly over-performed on contrast enhanced images 
(VD P < .05; SD P < .01, Supplementary Fig. 41), despite being trained primarily 
on non-contrast data (Supplementary Fig. 40). Finally, further work on understanding 
models’ accuracy is needed, especially given known sensitivities to imaging parameters 
including CT slice thickness and reconstruction algorithms42,74. 

Limitations
Several limitations should be noted. Both our in silico and end-user testing are limited by 
their retrospective nature. Much of our discovery data relied on a single human expert. 
While this enabled us to highlight the model’s ability to encapsulate the skills of a given 
expert, it also implies our models may have acquired a natural bias. Our dosimetric 
analysis may not always reflect clinical reality as it does not allow for manually editing the 
intermediate volume between GTV and PTV, namely the clinical target volume (CTV). 
The design of our end-user tests did not allow for testing AI effects on intraobserver 
variability, nor did it did not incorporate PET imaging - a commonly used modality in 
guiding RT planning for NSCLC patients75. Additionally, while blinding readers to the 
source of the provided segmentations allowed for a more fair evaluation of the AI model, 
this design did not allow for testing human bias towards a clinical AI algorithm76. Such 
a bias may have ramifications for real-world adoption and use.

Implications for Cancer Care
In addition to assisting day-to-day RT planning, automated segmentation may also help 
propel more modern RT practices. Specifically, image-guided adaptive RT may benefit 
from automated continuous target segmentation to account for anatomical variations 
during irradiation77. Such tools may also enable RT applications in the global health 



Chapter 8

198

context. As expert human knowledge is embedded into AI tools they have the potential 
to transcend borders and bring much needed expertise to medically underserved 
communities suffering from health professional shortages78. Beyond RT, cancer imaging 
in clinical trials may also benefit from automated tumor segmentation for consistent 
volumetric response assessment beyond current 2D methods (e.g. RECIST)79, as well as 
for developing volumetric imaging biomarkers80,81. 

Conclusion

Early testing of AI tools in clinical environments is crucial for translation to clinic. Our 
four-component validation strategy allows for uncovering downstream consequences 
of clinical AI implementation that may otherwise go unnoticed in typical in silico 
validation studies. We encourage the broader adoption of similar validation strategies 
that help close the translational gap for clinical AI applications.
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Commentary

In The Lancet Digital Health, Bin Lou and colleagues1 apply deep learning methods 
to analyse pre-treatment CT scans in a retrospective cohort study of 944 patients (849 
in the internal study cohort and 95 in the independent validation cohort) treated with 
stereotactic body radiation therapy, a form of high-dose, pinpoint radiation therapy 
for lung tumours. The study presents a novel analysis by integrating traditional 
radiomics features through multi-task learning, applying a time-based survival analysis, 
and incorporating new deep learning methods including a three-dimensional (3D) 
convolutional neural network to analyse lung tumours before treatment. The authors 
input pre-therapy lung CT images into Deep Profiler, a multi-task deep neural network 
that has radiomics incorporated into the training signal. They combined these data with 
clinical variables to derive iGray, an individualised radiation dose that estimates the 
probability of treatment failure to be below 5%. Models that included Deep Profiler and 
clinical variables predicted treatment failures with a concordance index of 0·72 (95% CI 
0·67–0·77), a significant improvement compared with traditional radiomics (p<0·0001) 
or clinical variables (p<0·0001) alone. The potential clinical applications of such models 
include identifying tumours at the highest risk of resistance to radiation therapy, and 
personalised dosing of radiation therapy to maximise likelihood of tumour control.

This study is representative of a major turning point in the underlying radiomics 
methodologies used in treatment response prediction and prognosis, specifically in 
radiation therapy with broader implications across other cancer therapies. Traditional 
radiomics makes use of handcrafted features and has been studied extensively as an 
imaging biomarker to predict cancer outcomes and responses to therapy2,3. The 
handcrafted radiomics approach involves manual segmentation of the region of 
interest (eg, the tumour) on medical imaging, and extraction of thousands of human-
defined and curated quantitative features from the region of interest, which describe 
tumour shape and texture among other characteristics. In the final step, the approach 
involves application of machine learning methods to identify the imaging features that 
are associated with a given clinical endpoint. However, the human-derived nature of 
traditional radiomics methods has been criticised for introducing a source of human 
bias into the process4; there have been concerns of reproducibility5 due to the intra-
reader and inter-reader variability that results from the reliance on manual segmentation 
of the tumour, and due to variation in imaging and pre-processing techniques for 
feature extraction. Moreover, the value of traditional radiomics has recently come under 
question with the advent of deep learning methods and consequent proof-of-principle 
applications in predicting cancer outcomes6,7. For many of the deep learning radiomics 
applications, region of interest definition is based on a single point placement within 
the tumour volume, essentially replacing full tumour segmentations with approximate 
localisation and minimising the need for human input. Additionally, deep learning 
methods allow for automated learning of relevant radiographic features without the 
need for previous definition by researchers. In turn, these abstract representations have 
enabled a larger learning capacity, boosting generalisability and accuracy while reducing 
potential bias8.



Chapter 9

212

Some key caveats remain for clinical use of the deep learning model proposed by Lou 
and colleagues1. Firstly, the radiation dose delivered via stereotactic body radiation 
therapy for lung cancers represents the upper limit of what can be safely delivered to 
treat cancer in the human body with current technological capabilities. Of note, other 
tumours are often treated at substantially lower biological doses, and this study does not 
capture that range of radiation dose and tumour response curves. Secondly, radiation 
regimens used for stereotactic body radiation therapy are typically achievable only for 
localised (eg, stage I lung cancers) and small tumours (e.g. <5 cm diameter), and thus 
these dose predictions are not easily generalisable to more advanced tumours. Lastly, the 
model is built on a relatively rare event (3-year cumulative incidence of local failure was 
13·5% in the overall population) which is an advantage to patients because it means 
stereotactic body radiation therapy works well, but a disadvantage for predictive model 
building because of the increased risk of over-fitting.

In this study, the authors chose to identify handcrafted radiomics features as ground 
truth while comparing them to features identified by deep learning methods. The level 
of agreement between these two sets of features was then used as a cost function to train 
and optimise the predictive model. This method was understandably chosen as a means 
to provide a connection to the previous traditional radiomics landscape and greater 
interpretability. However, we believe that deep learning can emerge as an independent 
methodology that does not need to rely on handcrafted radiomics to move forward. 
Combining traditional radiomic features into deep learning models risks incorporating 
the aforementioned known human biases into the model. Additionally, a combined 
approach does not address the interpretability problem since even most mathematically-
derived handcrafted features capture uninterpretable imaging characteristics that cannot 
be discerned by the human eye. Nevertheless, the challenges of traditional radiomics 
approaches such as lack of reproducibility and interpretability as well as over-fitting on 
small datasets will only be amplified in deep learning-driven prediction models of cancer 
outcome. Fortunately, interpretability of features learned through neural networks is an 
active area of research9, while sharing and transparency initiatives are paving the way for 
larger curated cancer imaging repositories10.

Deep learning may also allow the decoding of new insights from cancer images and 
non-intuitive information that is uncharted thus far. We look with great interest at 
the saliency mapping in figure 5 of the Article, which identifies the regions of the CT 
scan in and around the tumour that are most associated with the predicted outcome 
of local tumour recurrence. Our group identified similar peri-tumoural localisation 
when performing activation mapping for a 3D convolutional neural network trained 
for a prognostication task in non-small lung cancer patients, which suggests potentially 
important imaging characteristics at the cancer-normal tissue interface7. Although these 
findings are preliminary and qualitative in nature, future work to understand the biology 
of this interface in relation to cancer therapy response prediction, and perhaps more 
importantly applying deep learning radiomics to target localised cancer therapies such 
as radiation therapy and surgery, represent a truly exciting new frontier of cancer care.
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Abstract

Data is a fundamental ingredient in building Artifi cial Intelligence (AI) models, and there 
are direct correlations between data quality and model robustness, fairness, and utility. A 
growing body of research points to AI systems deployed in a wide range of use cases, where 
algorithms trained on biased, incomplete, or ill-fi tting data produce problematic results. 
Despite the increased critical attention, data interrogation continues to be a challenging 
task with many issues being diffi  cult to identify and rectify. Algorithms often come under 
scrutiny only after they are developed and deployed, which exacerbates this problem 
and underscores the need for better data vetting practices earlier in the development 
pipeline. We introduce the Dataset Nutrition Label (the Label), a diagnostic framework 
providing a distilled yet comprehensive overview of dataset “ingredients”. Th e label 
is designed to be fl exible and adaptable; it comprises a diverse set of qualitative and 
quantitative modules generated through multiple statistical and probabilistic modelling 
backends. Working with the ProPublica dataset “Dollars for Docs”, we developed an 
open source tool consisting of seven sample modules. Consulting such a label prior to AI 
model development promotes vigorous data interrogation practices, aids in recognizing 
inconsistencies and imbalances, provides an improved means to selecting more 
appropriate datasets for specifi c tasks, and subsequently increases the overall quality of 
AI models. We also explore some challenges of the Label, including generalizing across 
diverse datasets, as well as discuss research and public policy agendas to further advocate 
its adoption and ultimately improve the AI development ecosystem.
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Introduction

Data driven decision making systems play an increasingly important role in our lives. 
Th ese frameworks are built on increasingly sophisticated artifi cial intelligence (AI) 
systems and are created and tuned by a growing population of data specialists1 to 
arrive at a diversity of decisions: from movie and music recommendations to digital 
advertisements and mortgage applications1. Th ese systems deliver untold societal and 
economic benefi ts, but they can also be harmful to individuals and society at large. 

Data is a fundamental ingredient of AI, and the quality of a dataset used to build a model 
will directly infl uence the outcomes it produces. An AI model trained on problematic 
data will likely produce problematic outcomes. Examples of these include gender bias 
in language translations surfaced through natural language processing2, and skin shade 
bias in facial recognition systems due to non-representative data3. Typically, the model 
development pipeline (Figure 1) begins with a question or goal. Within the realm of 
supervised learning, for instance, a data specialist will curate a labeled dataset of previous 
answers in response to the guiding question. Such data is then used to train a model 
to respond in a way that accurately correlates with past occurrences. In this way, past 
answers are used to forecast the future. Th is is particularly problematic when outcomes 
of past events are contaminated with (often unintentional) bias.

INTRODUCTION

Data driven decision making systems play an increasingly important role in our lives. These
frameworks are built on increasingly sophisticated artificial intelligence (AI) systems and are
created and tuned by a growing population of data specialists1 to arrive at a diversity of
decisions: from movie and music recommendations to digital advertisements and mortgage
applications1. These systems deliver untold societal and economic benefits, but they can also
be harmful to individuals and society at large.

Data is a fundamental ingredient of AI, and the quality of a dataset used to build a model
will directly influence the outcomes it produces. An AI model trained on problematic data will
likely produce problematic outcomes. Examples of these include gender bias in language
translations surfaced through natural language processing2, and skin shade bias in facial
recognition systems due to non-representative data3. Typically, the model development pipeline
(Figure 1) begins with a question or goal. Within the realm of supervised learning, for instance,
a data specialist will curate a labeled dataset of previous answers in response to the guiding
question. Such data is then used to train a model to respond in a way that accurately correlates
with past occurrences. In this way, past answers are used to forecast the future. This is
particularly problematic when outcomes of past events are contaminated with (often
unintentional) bias.

Figure 1: Model Development Pipeline

Models often come under scrutiny only after they are built, trained, and deployed. If a
model is found to perpetuate a bias - for example, over-indexing for a particular race or gender -
the data specialist returns to the development stage in order to identify and address the issue.
This feedback loop is inefficient, costly, and does not always mitigate harm; the time and energy
of the data specialist is a sunk cost, and if in use, the model deployment may have already
produced problematic outcomes. Some of these issues could be avoided by undertaking

1 The term “data specialist” is used instead of “data scientist” in the interest of using a general term that is broadly scoped to include
all professionals utilizing data in automated decision making systems such as data scientists, data analysts, and artificial intelligence
engineers and researchers. It also includes those who create, label, and receive datasets.
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Models often come under scrutiny only after they are built, trained, and deployed. If 
a model is found to perpetuate a bias - for example, over-indexing for a particular race 
or gender - the data specialist returns to the development stage in order to identify 
and address the issue. Th is feedback loop is ineffi  cient, costly, and does not always 
mitigate harm; the time and energy of the data specialist is a sunk cost, and if in use, the 

1 Th e term “data specialist” is used instead of “data scientist” in the interest of using a general term that is broadly 
scoped to include all professionals utilizing data in automated decision making systems such as data scientists, data 
analysts, and artifi cial intelligence engineers and researchers. It also includes those who create, label, and receive 
datasets. 
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model deployment may have already produced problematic outcomes. Some of these 
issues could be avoided by undertaking thorough interrogation of data at the outset 
of model The term “data specialist” is used instead of “data scientist” in the interest of 
using a general term that is broadly scoped to include all professionals utilizing data in 
automated decision making systems such as data scientists, data analysts, and artificial 
intelligence engineers and researchers. It also includes those who create, label, and 
receive datasets.development. However, this is still not a widespread practice within AI 
model development efforts. 

We conducted an anonymous online survey (Figure 2), the results of which further 
lend credence to this problem. Although many (47%) respondents report conducting 
some form of data analysis prior to model development, most (74%) indicate that their 
organizations do not have explicit best practices for such analysis. 59% of respondents 
reported relying primarily on experience and self-directed learning (through online 
tutorials, blogs, academic papers, Stack Overflow, and online data competitions) to 
inform their data analysis methods and practices. This survey indicates that despite 
limited current standards, there is widespread interest to improve data analysis practices 
and make them accessible.

 thorough interrogation of data at the outset of model The term “data specialist” is used instead 
 of “data scientist” in the interest of using a general term that is broadly scoped to include all 
 professionals utilizing data in automated decision making systems such as data scientists, data 
 analysts, and artificial intelligence engineers and researchers. It also includes those who create, 
 label, and receive datasets.development. However, this is still not a widespread practice within 
 AI model development efforts. 

 We conducted an anonymous online survey  (Figure 2),  the results of which further lend 
 credence to this problem. Although many (47%) respondents report conducting some form of 
 data analysis prior to model development, most (74%) indicate that their organizations do not 
 have explicit best practices for such analysis. 59% of respondents reported relying primarily on 
 experience and self-directed learning (through online tutorials, blogs, academic papers, Stack 
 Overflow, and online data competitions) to inform their data analysis methods and practices. 
 This survey indicates that despite limited current standards, there is widespread interest to 
 improve data analysis practices and make them accessible. 

 Figure 2:  (A) Survey results about data analysis best  practices in respondents’ organizations 
 and (B) Survey results about how respondents learned to analyze data 

 To improve the accuracy and fairness of AI systems, it is imperative that data specialists 
 are able to more quickly assess the viability and fitness of datasets, and more easily find and 
 use better quality data to train their models. As a proposed solution, we introduce the Dataset 
 Nutrition Label, a diagnostic framework to address and mitigate some of these challenges by 
 providing critical information to data specialists at the point of data analysis. The Label thus acts 
 as a first point of contact where decisions regarding the utility and fitness of specific datasets 
 can be made. This is achieved through allowing the recognition of dataset inconsistencies and 
 exclusions as well as promoting dataset interrogation as a crucial and inevitable procedure in 
 the AI model development pipeline - with the ultimate goal of improving the overall quality of AI 
 systems. 
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Figure 2. (A) Survey results about data analysis best practices in respondents’ organizations and (B) Survey results about 
how respondents learned to analyze data

To improve the accuracy and fairness of AI systems, it is imperative that data specialists 
are able to more quickly assess the viability and fitness of datasets, and more easily find 
and use better quality data to train their models. As a proposed solution, we introduce 
the Dataset Nutrition Label, a diagnostic framework to address and mitigate some of 
these challenges by providing critical information to data specialists at the point of data 
analysis. The Label thus acts as a first point of contact where decisions regarding the 
utility and fitness of specific datasets can be made. This is achieved through allowing 
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the recognition of dataset inconsistencies and exclusions as well as promoting dataset 
interrogation as a crucial and inevitable procedure in the AI model development pipeline 
- with the ultimate goal of improving the overall quality of AI systems.

We begin with a review of related work, largely drawing from the fields of nutrition and 
privacy where labels are a useful mechanism to distill essential information, enable better 
decision-making, and influence best practices. We then discuss the Dataset Nutrition 
Label prototype, our methodology, demonstration dataset, and key results. This is 
followed by an overview of the benefits of the tool, its potential limitations, and ways to 
mitigate those limitations. We then briefly summarize some future directions, including 
research and public policy agendas that would further advance the goals of the Label. 
Lastly, we discuss implementation of the prototype and key takeaways.

Labels in Context and Related Work

To inform the development of our prototype and concept, we surveyed the literature 
for labeling efforts. Labels and warnings are utilized effectively in product safety4, 
pharmaceuticals5, energy6, and material safety7. We largely draw from the fields of 
nutrition, online privacy, and algorithmic accountability as they are particularly salient 
for our purposes. The former is the canonical example and a long standing practice 
subject to significant study while the latter provides valuable insights in the application 
of a “nutrition label” in other domains, particularly in subjective contexts and where 
there is an absence of legal mandates and use is voluntary. Collectively, they elucidate 
the impacts of labels on audience engagement, education, and user decision making.

In 1990, Congress passed the Nutrition Labeling and Education Act (P.L. 101 - 535), 
which includes a requirement that certain foodstuffs display a standardized “Nutrition 
Facts” label8. By mandating the label, vital nutritional facts were communicated in the 
context of the “Daily Value” benchmark, and consumers could quickly assess nutrition 
information and more effectively abide by dietary recommendations at the moment 
of decision8–10. In the nearly three decades since its implementation, several studies 
have examined the efficacy of the now ubiquitous “Nutrition Facts” label; these studies 
include analyses of how consumers use the label9,11, and the effect it has had on the 
market12. Though some cast doubt on the benefits of the mandate in light of its costs13, 
most research concludes that the “Nutrition Facts” label has positive impact14,15. Surveys 
demonstrate widespread consumer awareness of the label, and its influence in decision 
making around food, despite a relatively short time since the passage of the Nutrition 
Labeling and Education Act16. According to the International Food Information 
Council, more than 80% of consumers reported they looked at the “Nutrition Facts” 
label when deciding what foods to purchase or consume, and only four percent 
reported never using the label17. Five years after the mandate, the Food Marketing 
Institute found that about one-third of consumers stopped buying food because of 
what they read on the label16. With regard to the information contained on the label 
and consumer understanding, researchers found that “label format and inclusion of 
(external) reference value information appear to have (positive) effects on consumer 
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perceptions and evaluations”18 but consumers indicated confusion about the “Daily 
Value” comparison, suggesting that more information about the source and reliability 
of ground truth information would be useful17. The literature focuses primarily on 
the impact to consumers rather than on industry operations such as production and 
advertising. However, the significant impact of reported sales and marketing materials 
on consumers12 provides a foundation for further inquiry into how this has affected the 
greater food industry.

In the field of privacy and privacy disclosures, the nutrition label serves as a useful point 
of reference and inspiration19. Researchers at Carnegie Mellon and Microsoft created 
the “Privacy Nutrition Label” to better surface essential privacy information to assist 
consumer decision making with regard to the collection, use, and sharing of personal 
information20. The “Privacy Nutrition Label” operates much like “Nutrition Facts” and 
sits atop existing disclosures. It improves the functionality of the Platform for Privacy 
Notices, a machine readable format developed by the World Wide Web Consortium, 
itself an effort to standardize and improve legibility of privacy policies21. User surveys 
that tested the “Privacy Nutrition Label” against alternative formats found that the label 
outperformed alternatives with “significant positive effects on the accuracy and speed of 
information finding and reader enjoyment with privacy policies,” as well as improved 
consumer understanding20,21. 

Ranking and scoring algorithms also pose challenges in terms of their complexity, 
opacity, and sensitivity to the influence of data. End users and even model developers 
face difficulty in interpreting an algorithm and its ranking outputs, and this difficulty is 
further compounded when the model and the data on which it is trained is proprietary 
or otherwise confidential, as is often the case. “Ranking Facts” is a web-based system 
that generates a “nutrition label” for scoring and ranking algorithms based on factors 
or “widgets” to communicate an algorithm’s methodology or output22. Here, the 
label serves more as an interpretability tool than as a summary of information as the 
“Nutrition Facts” and “Privacy Nutrition Label” operate. The widgets work together, 
not modularly, to assess the algorithm on author-created categories of transparency, 
fairness, stability, and diversity. The demonstration scenarios for using real datasets from 
college rankings, criminal risk assessment, and financial services establish that the label is 
potentially applicable to a diverse range of domains. This lends credence to the potential 
utility in other fields as well, including the rapidly evolving field of AI.

More recently, in an effort to improve transparency, accountability, and outcomes 
of AI systems, AI researchers have proposed methods for standardizing practices and 
communicating information about the data itself.

The first draws from computer hardware and industry safety standards where datasheets 
are an industry-wide standard. In datasets, however, they are a novel concept. Datasheets 
are functionally comparable to the label concept and, like labels that by and large 
objectively surface empirical information, can often include other information such 
as recommended uses which are more subjective. “Datasheets for Datasets” a proposal 
from researchers at Microsoft Research, Georgia Tech, University of Maryland, and the 
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AI Now Institute seeks to standardize information about public datasets, commercial 
APIs, and pretrained models. The proposed datasheet includes dataset provenance, 
key characteristics, relevant regulations and test results, but also significant yet more 
subjective information such as potential bias, strengths and weaknesses of the dataset, 
API, or model, and suggested uses23. As domain experts, dataset, API, and model creators 
would be responsible for creating the datasheets, not end users or other parties.

We are also aware of a forthcoming study from the field of natural language processing 
(NLP), “Data Statements for NLP: Toward Mitigating System Bias and Enabling 
Better Science”24. The researchers seek to address ethics, exclusion, and bias issues 
in NLP systems. Borrowing from similar practices in other fields of practice, the 
position paper puts forward the concept and practice of “data statements” which are 
qualitative summaries that provide detailed information and important context about 
the populations the datasets represent. The information contained in data statements 
can be used to surface potential mismatches between the populations used to train 
a system and the populations in planned use prior to deployment, to help diagnose 
sources of bias that are discovered in deployed systems, and to help understand how 
experimental results might generalize. The paper’s authors suggest that data statements 
should eventually become required practice for system documentation and academic 
publications for NLP systems and should be extended to other data types (e.g. image 
data) albeit with tailored schema.

We take a different, yet complementary, approach. We hypothesize that the concept of 
a “nutrition label” for datasets is an effective means to provide a scalable and efficient 
tool to improve the process of dataset interrogation and analysis prior to and during 
model development. In supporting our hypothesis, we created a prototype, the Dataset 
Nutrition Label (the Label). Three goals drive this work. First, to inform and improve 
data specialists’ selection and interrogation of datasets and to prompt critical analysis. 
Consequently, data specialists are the primary intended audience. Second, to gain 
traction as a practical, readily deployable tool, we prioritize efficiency and flexibility. 
To that end, we do not suggest one specific approach to the Label, or charge one 
specific community with creating the Label. Rather, our prototype is modular, and the 
underlying framework is one that anyone can utilize. Lastly, we leverage probabilistic 
computing tools to surface potential corollaries, anomalies, and proxies. This is 
particularly beneficial because resolving these issues requires excess development time, 
and can lead to undesired correlations in trained models.

Methods

Some assumptions are made to focus our prototyping efforts. Only tabular data is 
considered. Additionally, we limit our explorations to datasets <10k rows. This allows for 
a narrower scope and deeper analysis. The Label’s first contribution lies in the standard 
format it provides for metadata communication. This works to address weaknesses in 
the most common format for tabular data exchange: comma separated values, or the 
“.csv” format. Despite its simple plain-text nature, portability, and interoperability25, the 
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lack of additional .csv metadata describing how data should be interpreted, validated, 
and displayed, is perhaps its biggest drawback. As early as 2015, the World Wide 
Web Consortium published recommendations on “Metadata Vocabulary for Tabular 
Data” and “Access methods for CSV Metadata”26,27. However, the adoption of these 
recommendations within the data science community is not widespread. The Label also 
builds on existing data science practices: directly following the acquisition of a dataset, 
most data specialists often enter an “exploratory phase”. This can be seen, for instance, 
on web-hosted machine learning competition platforms such as Kaggle, and involves 
understanding dataset distributions through histograms and other basic statistics. The 
Label attempts to provide these statistics “out of the box,” with the hopes of shortening 
model development lead times. The Label also aims to provide insights from advanced 
probabilistic modelling backends for more advanced users. While targeted mainly 
at a professional audience, many of the modules do not require expert training for 
interpretation and can thus be utilized in a public-facing version of the Label.

Modular Architecture

The Label is designed in an extensible fashion with multiple distinct components that 
we refer to as “modules” (Table 1). The modules are stand-alone, allowing for greater 
flexibility as arrangements of different modules can be used for different types of datasets. 
This format also caters to a wide range of requirements and information available for a 
specific dataset. During label generation and subsequent updates, it also accommodates 
data specialists of different backgrounds and technical skill levels.

Modules (Table 1 & 2) range from the purely non-technical, such as the Metadata 
module, to the highly technical, such as the Probabilistic Computing module. Some 
modules require manual effort to generate, such as those that provide qualitative 
descriptions of the data (Metadata, Provenance, Variables), while others can ideally be 
the result of an automated process (Statistics, Pair Plots). Modules also vary in their 
subjectivity, especially where there exists a reliance on the Label author to identify which 
questions should be asked of the data and in what way (e.g. Probabilistic Computing). 
Many of the example modules are also interactive, highlighting a crucial benefit of a 
label living on a platform (such as a web page) that supports user interaction. This 
allows Label users to interrogate various dataset aspects with great flexibility and free of 
preconceived notions developed during Label generation. Lastly, some modules could 
be designed to act as proxies for their corresponding dataset as they do not expose the 
underlying data. This could be key when dealing with proprietary datasets, as much 
of this data will not or cannot be released to the public based on intellectual property 
or other constraints. Other modules expose information such as distribution metrics 
which, in theory, would allow adversaries to approximate the dataset contents. The 
choice of module(s) is thus based on the availability of information, level of willingness 
and effort volunteered to document the dataset, and privacy concerns.
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Table 1. Table illustrating 7 modules of the Dataset Nutrition Label, together with their description, role, and contents.

Module Name Description Contents
Metadata Meta information. This module is the only 

required module. It represents the absolute 
minimum information to be presented

Filename, file format, URL, domain, 
keywords, type, dataset size, % of 
missing cells, license, release date, 
collection range, description

Provenance Information regarding the origin and 
lineage of the dataset

Source and author contact 
information with version history

Variables Descriptions of each variable (column) in 
the dataset

Textual descriptions

Statistics Simple statistics for all
variables, in addition to stratifications into 
ordinal, nominal, continuous, and discrete

Least/most frequent entries,
min/max, median, mean,.etc

Pair Plots Distributions and linear correlations 
between 2 chosen variables

Histograms and heatmaps

Probabilistic Model Synthetic data generated using distribution 
hypotheses from which the data was drawn 
- leverages a probabilistic programming 
backend

Histograms and other statistical 
plots

Ground Truth Correlations Linear correlations between a chosen 
variable in the dataset and variables from 
other datasets considered to be “ground 
truth”, such as Census Data

Heatmaps

The list of modules currently examined in this study, while not exhaustive, provides 
a solid representation of the kinds of flexibility supported by the Label framework. 
Other modules considered for future iterations or additional datasets include but are not 
limited to: a comments section for users to interact with authors of the Label for feedback 
or other purposes; an extension of the Provenance section that includes the versioning 
history and change logs of the dataset and associated Labels over time, similar to Git; a 
privacy-focused module that indicates any sensitive information and whether the data 
was collected with consent; and finally, a usage tracking module that documents data 
utilization and references using some form of identifier, similar to the Digital Object 
Identifier28 and associated citation systems in scientific publishing.

Table 2. Variability of attributes across prototype modules highlights the potential diversity of information included in 
a Label 

Module Characteristic - Level Required

Module Name Technical 
Expertise Manual Effort Subjectivity Interactivity Data Exposure

Metadata Low High Low Low Low
Provenance Low High Low Low Low
Variables Low High Medium Low Medium
Statistics Medium Low Low Low Medium
Pair Plots Medium Low Low High High
Probabilistic Modeling High Medium High Low High
Ground Truth Correlations Medium Medium Low Low High
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Web-Based Application

The label is envisioned as a digital object that can be both generated and viewed by web-
based applications. The label ecosystem comprises two main components: a label maker 
and a label viewer (Figure 3). Given a specific dataset, the label maker application 
allows users to select the desired modules and generate them. While the generation of 
some modules is fully automated, some require human input (Table 2). For instance, 
the Metadata module mainly requires explicit input, while the Pair Plots module can be 
generated automatically from the dataset. The Label generator pre-populates as many 
fields as possible and alerts users to those requiring action. The Label itself lives in a 
.json format, as one that is human readable and well supported. The Label can then be 
viewed within the label viewer application where formating is carried out to achieve 
the desired user interface and user interaction effects. In terms of visual appearance 
and design, format and typeface requirements of the “Nutrition Facts” label 29 is used. 
These guidelines, such as the all black font color on white contrasting background, 
are optimized for clarity and conciseness. Design changes are anticipated in further 
iterations, and should be informed by user testing. 

 Figure 3:  Architecture of the proposed Data Nutrition  Label ecosystem. 

 BACKENDS 

 Simple statistical analyses involving the generation of histograms, distribution information, and 
 linear correlations are carried out directly in the browser, given tabular datasets of <100K rows. 
 Server-side processing is thus reserved for more specialized and sophisticated analyses 
 requiring additional computational power. Such processing could run multiple backends with the 
 ultimate aim of providing the Label authors with a diverse set of options, fueled by the plethora 
 of tools developed by research groups for automating the generation of summaries, insights, 
 and understandings of datasets. The Label thus becomes a medium for the continuous 
 deployment and testing of these tools. A somewhat recent and particularly powerful example of 
 this is probabilistic computing, and specifically, BayesDB  30  , an open source platform developed 
 by researchers at MIT. With minimal modeling and programming effort, BayesDB enables 
 inference of a model that captures the structure underlying the data and generates statistical 
 summaries based on such structure. 

 RESULTS 

 To test the concept generally and the modular framework specifically, we built a prototype with a 
 dataset that included information about people and was maintained by an organization invested 
 in better understanding the data. This combination of factors provides necessary information 
 and access to build a wide variety of modules, including those that require full knowledge of the 
 data and the ability to contact the organization that maintains the dataset. We were granted 
 access to the “Dollars for Docs” database from ProPublica, an independent, nonprofit newsroom 
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Figure 3. Architecture of the proposed Data Nutrition Label ecosystem.
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Backends

Simple statistical analyses involving the generation of histograms, distribution 
information, and linear correlations are carried out directly in the browser, given tabular 
datasets of <100K rows. Server-side processing is thus reserved for more specialized 
and sophisticated analyses requiring additional computational power. Such processing 
could run multiple backends with the ultimate aim of providing the Label authors with 
a diverse set of options, fueled by the plethora of tools developed by research groups for 
automating the generation of summaries, insights, and understandings of datasets. The 
Label thus becomes a medium for the continuous deployment and testing of these tools. 
A somewhat recent and particularly powerful example of this is probabilistic computing, 
and specifically, BayesDB30, an open source platform developed by researchers at MIT. 
With minimal modeling and programming effort, BayesDB enables inference of a model 
that captures the structure underlying the data and generates statistical summaries based 
on such structure. 

Results

To test the concept generally and the modular framework specifically, we built a 
prototype with a dataset that included information about people and was maintained by 
an organization invested in better understanding the data. This combination of factors 
provides necessary information and access to build a wide variety of modules, including 
those that require full knowledge of the data and the ability to contact the organization 
that maintains the dataset. We were granted access to the “Dollars for Docs” database 
from ProPublica, an independent, nonprofit newsroom that produces investigative 
journalism in the public interest2. The dataset, which contains payments to doctors 
and teaching hospitals from pharmaceutical and medical device companies over a two-
year time period (August 2013 - December 2015), was originally released by the U.S. 
Centers for Medicare and Medicaid Services (CMS) and compiled by ProPublica into a 
single, comprehensive database. 

The resulting prototype successfully demonstrates how disparate modules can be built 
on a specific dataset in order to highlight multiple, complementary facets of the data, 
ideally to be leveraged for further investigation by data specialists through the use of 
additional tools and strategies. The prototype Label includes seven modules (Table 1, 
2). The Metadata, Provenance, and Variables modules (Supp. Figure 1) provide as-is 
dataset information. They mirror information submitted by the Label authors as well as 
provide a standard format for both the generation and consumption of such data. The 
Statistics module (Supp. Figure 2) starts to offer a glimpse into the dataset distributions. 
For instance, the skewness of a 500 row dataset subset towards a particular drug “Xarelto” 
can be quickly identified as the most frequent entry under the variable “product_name”, 
and “Aciphex” as the least frequent entry. The Pair Plot module (Figure 4) starts to 
introduce interactivity into the label where the viewer is able to choose the variable pair 
being compared to one another. A specialist building a model predicting marketing 

2 https://projects.propublica.org/docdollars/
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spend in each state, for example, may choose to compare “recipient_state” and “total_
amount_of_payment_usdollars,” and will observe that some states (CA, NY) are more 
highly correlated with spend. In this case, the specialist would probably normalize the 
population as the next step beyond consulting the Label in order to identify anomalous 
spending trends. 

Figure 4: Prototype Label demonstrating the Pair Plot module and highlighting the interactive
dropdown menus for selecting variables.

While all modules thus far investigate the dataset itself, the Probabilistic Model module
(Figure 5) attempts to generate synthetic data by utilizing the aforementioned BayesDB
backend. Computed from an inferred generative model, this module allows for the full benefits of
Bayesian analysis31, such as interpretability of inferences, coping with missing data, and
robustness to outliers and regions of sparse data. In this specific use case, an
underrepresented drug is chosen from the dataset and the probability of this drug receiving a
payment in different states is inferred. With the inevitable variation in the representation of
different groups in datasets, such analyses are of great utility in extracting insights - even from
relatively small sample sizes. A quick toggle indicates that the top few states for marketing
spend are likely the same few states - with a few exceptions, including that NJ is likely to
receive much more money for marketing activities relating to the drug Xarelto. Again, this
information only acts as a flag for the “what”; specialists will ideally continue to investigate the
data in order to identify the “why”.
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Figure 4. Prototype Label demonstrating the Pair Plot module and highlighting the interactive dropdown menus for 
selecting variables.

While all modules thus far investigate the dataset itself, the Probabilistic Model module 
(Figure 5) attempts to generate synthetic data by utilizing the aforementioned BayesDB 
backend. Computed from an inferred generative model, this module allows for the 
full benefi ts of Bayesian analysis31, such as interpretability of inferences, coping with 
missing data, and robustness to outliers and regions of sparse data. In this specifi c use 
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case, an underrepresented drug is chosen from the dataset and the probability of this 
drug receiving a payment in diff erent states is inferred. With the inevitable variation 
in the representation of diff erent groups in datasets, such analyses are of great utility 
in extracting insights - even from relatively small sample sizes. A quick toggle indicates 
that the top few states for marketing spend are likely the same few states - with a few 
exceptions, including that NJ is likely to receive much more money for marketing 
activities relating to the drug Xarelto. Again, this information only acts as a fl ag for the 
“what”; specialists will ideally continue to investigate the data in order to identify the 
“why”.

 Figure 5:  Prototype Label demonstrating the Probabilistic  Model module and showcasing a 
 hypothetical distribution for payments made towards the drug "Eliquis" across different states. 

 It is unavoidable that datasets collected from the real-world have relationships to 
 demographics that the data specialist or other entities do not wish to propagate into the learned 
 model and the inferences produced from it. For example, is a variable or an aggregate of a 
 variable strongly correlated with the Hispanic population in a given region? To surface 
 relationships like this, it is often necessary to explicitly compute a comparison between the 
 dataset and demographic “ground truth” data, which is a task that can be both time consuming 
 and challenging. The Ground Truth Correlation module  (Figure 6)  provides the data specialist 
 initial evidence as to whether such relationships are likely, thus warranting further analysis. In 
 order to surface any anomalies in the demographic distribution of these variables, we selected 
 the 2010 US Census data as “ground truth” for zip code and race. The module then correlates 
 zip code Census data with the dataset and calculates the Pearson correlation between 
 demographics and field aggregates. To demonstrate its utility, the Label  (Figure 6, top) 
 highlights the negative correlations between the (sum of the) amount of payment field and 
 demographics. A second example  (Figure 6, bottom)  ,  highlights the positive correlation 
 between a “spend_per_person” aggregate and demographics. This module demonstrates, in a 
 straightforward way, specific anomalous relationships in the data that the data specialist should 
 pay attention to during model training. In the prototype, we observe a slight positive correlation 
 between white zip codes and payments, and a slight negative correlation between rural zip 
 codes and payments. Toggling to per person spend underscores similar overall trends. 
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Figure 5. Prototype Label demonstrating the Probabilistic Model module and showcasing a hypothetical distribution for 
payments made towards the drug “Eliquis” across diff erent states.

It is unavoidable that datasets collected from the real-world have relationships to 
demographics that the data specialist or other entities do not wish to propagate into 
the learned model and the inferences produced from it. For example, is a variable or an 
aggregate of a variable strongly correlated with the Hispanic population in a given region? 
To surface relationships like this, it is often necessary to explicitly compute a comparison 
between the dataset and demographic “ground truth” data, which is a task that can be 
both time consuming and challenging. Th e Ground Truth Correlation module (Figure 
6) provides the data specialist initial evidence as to whether such relationships are likely, 
thus warranting further analysis. In order to surface any anomalies in the demographic 
distribution of these variables, we selected the 2010 US Census data as “ground truth” 
for zip code and race. Th e module then correlates zip code Census data with the dataset 
and calculates the Pearson correlation between demographics and fi eld aggregates. To 
demonstrate its utility, the Label (Figure 6, top) highlights the negative correlations 
between the (sum of the) amount of payment fi eld and demographics. A second example 
(Figure 6, bottom), highlights the positive correlation between a “spend_per_person” 
aggregate and demographics. Th is module demonstrates, in a straightforward way, 
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specific anomalous relationships in the data that the data specialist should pay attention 
to during model training. In the prototype, we observe a slight positive correlation 
between white zip codes and payments, and a slight negative correlation between rural 
zip codes and payments. Toggling to per person spend underscores similar overall trends. 

 Figure 6:  The negative (top) and positive (bottom)  correlations to demographics produced by 
 the Ground Truth Correlations module. 

 DISCUSSION 

 The Label offers many benefits. Overall, it prompts critical questions and interrogation in the 
 preprocessing phase of model development. It also expedites decision making, which saves 
 time in the overall model development phase without sacrificing the quality or thoroughness of 
 the data interrogation itself, perhaps encouraging better practices at scale. These benefits apply 
 across the spectrum of data specialists’ skill and experience, but are particularly useful for those 
 new to the field or less attuned to concerns around bias and algorithmic accountability. First, the 
 Label creates a pre-generated “floor” for basic data interrogation in the data selection phase. It 
 also indicates key dataset attributes in a standardized format. This gives data specialists a 
 distilled yet comprehensive overview of the “ingredients” of the dataset, which allows for a quick 
 and effective comparison of multiple datasets before committing to one for further investigation. 
 It also enables the data specialist to better understand and ascertain the fitness of a dataset by 
 scanning missing values, summary statistics of the data, correlations or proxies, and other 
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Figure 6. The negative (top) and positive (bottom) correlations to demographics produced by the Ground Truth 
Correlations module.
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Discussion

The Label offers many benefits. Overall, it prompts critical questions and interrogation 
in the preprocessing phase of model development. It also expedites decision making, 
which saves time in the overall model development phase without sacrificing the quality 
or thoroughness of the data interrogation itself, perhaps encouraging better practices at 
scale. These benefits apply across the spectrum of data specialists’ skill and experience, but 
are particularly useful for those new to the field or less attuned to concerns around bias 
and algorithmic accountability. First, the Label creates a pre-generated “floor” for basic 
data interrogation in the data selection phase. It also indicates key dataset attributes in 
a standardized format. This gives data specialists a distilled yet comprehensive overview 
of the “ingredients” of the dataset, which allows for a quick and effective comparison 
of multiple datasets before committing to one for further investigation. It also enables 
the data specialist to better understand and ascertain the fitness of a dataset by scanning 
missing values, summary statistics of the data, correlations or proxies, and other 
important factors. As a result, the data specialist may discard a problematic dataset or 
work to improve its viability prior to utilizing it. 

Improved dataset selection affords a secondary benefit: higher quality models. The Label 
provides data specialists improved means by which to interrogate the selected dataset 
during model development, previously a costly and onerous enterprise. The Ground 
Truth Correlation module, in particular, provides a helpful point of reference for the 
data specialist before model completion, and surfaces issues such as surprising variable 
correlations, missing data, anomalous data distributions, or other factors that could 
reinforce or perpetuate bias in the dataset. Addressing these factors in the model creation 
and training phase saves costs, time, and effort, and also could prevent bad outcomes 
early on, rather than addressing them after the fact. 

The Label is built with scalability in mind, and with an eye towards standardization. The 
modular framework provides flexibility for dataset authors and publishers to identify 
the “right” kind and amount of information to include in a Label; over time, this 
could become a set of domain-specific best practices. The interactivity of the Label also 
permits flexibility, as insights about the dataset may arise over time. For example, the 
ground truth data used for comparison could evolve, rendering a previously unsuitable 
dataset suitable. Interactive Labels also give data specialists the ability to dive further 
into anomalous data, rather than simply accepting static information provided by 
the Label author. With some modules more subjective in nature, and with a range of 
domain expertise across data specialists, this is particularly important. For advanced 
data specialists, the flexible Label backend makes it easy to “plug-in” more complex 
engines. Such complex backends can provide different statistical tools; for example, the 
Probabilistic Computing module makes it possible to investigate low frequency variables 
by generating synthetic data. Synthetic data gives data specialists the ability to address 
incomplete data, and opens a potential path to privacy preserving data usage32.

Lastly, the Label functioning as a proxy for the dataset itself is an intriguing, even if 
distant, possibility. Increased calls for accountability of AI systems demand investigation 
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of datasets used in training models, but disclosing those datasets, even to a limited 
audience, may pose risks to privacy, security, and intellectual property that calls this 
approach into question. If the Label is able to convey the information essential for 
accountability in the dataset without disclosing the data itself, it would provide a 
valuable and much needed auditing tool33 for AI systems while still preserving privacy, 
security, and proprietary information. 

Limitations and Mitigations

There are challenges to our approach. The extensive variety of datasets used to build 
models raises important questions around whether the Label can generalize across data 
and dataset type, size, composition, and in different domains, and furthermore, whether 
a data specialist or domain expert will need to be involved in the creation of a Label 
across these different datasets. This could arise in an instance where important semantic 
information is atypically labeled and would be challenging to interpret automatically, 
such as if the field for zip code in a dataset had a custom field for “geographic area.” A 
data specialist or domain expert may also be required when building a Label for sensitive 
or proprietary data, which may be accessible only to those who built the dataset and not 
accessible to the public. Building the Label as a modular system somewhat mitigates the 
complication of requiring input from a domain expert, as the framework can adapt to 
domain-specific best practices, and can easily support the generation of different types of 
Labels based on access. Within the Provenance module, it may be necessary or helpful to 
surface who made the Label, and what relationship they have to the dataset. 

The veracity and usefulness of the Ground Truth Comparison module depends on the 
accuracy of the “Ground Truth” dataset, which serves as a benchmark standard and 
is considered objective, accurate, and provable, and with clear provenance. However, 
problematic ground truth data may lead to futile or even harmful comparisons. Without 
a realistic way to eliminate bias in all datasets, a mitigating step is to build Labels for 
ground truth datasets themselves. If these Labels include community feedback and 
comment modules, dataset authors can address the issues directly. 

Further investigation is necessary to understand the feasibility and desirability of using 
the Label as a proxy for proprietary datasets. This would likely require that the dataset 
creator or controller create the Label. Another challenge is that the Label might not 
prompt the right questions or reactions for the data specialist, leaving certain biased 
data undetected. Analyses of machine bias indicate that zip codes often proxy for race, 
but many other proxies still exist, especially as the models themselves approach levels 
of complexity that are difficult or impossible for humans to comprehend and new or 
unexpected proxies emerge. Integrating new methods or tools to help identify proxies 
will be important to the industry, and our hope is that the Label will be flexible in such 
a way that these tools can be leveraged to create additional modules as they become 
available. 
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Finally, design of the label itself will require additional attention to determine the 
appropriate amount of information for presentation, comprehension, and adoption. 
As Kelley et al. made clear in their work on Privacy Nutrition Label20, design is a key 
element in the efficacy of the label. It is worth investigating and testing the most effective 
presentation to drive adoption.

Future Directions 

This paper and prototype are the first step toward bringing together a wide range of 
data specialists, from those who are creating and publishing datasets to those utilizing 
datasets to build models, in order to improve the quality of datasets used in AI-generated 
models. 

Deeper research and iteration will be necessary as we continue to build additional 
prototypes of the Label. Creating a “nutrition label” for datasets is nascent and requires 
additional investigations about what information (in the form of modules or otherwise) 
is useful and practical to include. Based on the relatively small reach of our survey, we 
also recommend that a more rigorous survey be conducted to more accurately identify 
needs, as the survey we administered was limited in its reach, and disproportionately 
indexed to American and European respondents working in the private sector. The 
information pertinent to a data specialist will also shift based on the domain of the 
data, necessitating the building of additional prototypes for different kinds of datasets. 
The opportunities afforded by complex machine learning tools such as BayesDB in 
the creation of additional modules deserve more fulsome exploration to maximize the 
usability and usefulness of the Label.

Through building relationships with dataset publishers and circulating the Label, we 
hope to identify not only additional datasets for prototypes, but also to launch our 
Label on open datasets so that we can study the impact of the Label on the use of 
and conversation around the data. We will consider collaborations with colleagues 
from industry and academia to further drive this work, building knowledge around 
the impediments to adoption and considering ways that regulatory frameworks could 
further support the creation of a best practice or standard.

In terms of the Label ecosystem, the existence of a label for any given dataset could be 
notated using a mark or symbol, such as the “Conformité Européene” (CE) mark used 
by the European Union34, on the author’s or dataset host’s webpage. Clicking on the 
mark would then navigate to the label viewer application and fetch the corresponding 
Label from a central repository where all Labels are hosted. Such a centralized archive 
of Labels would allow for generating usage statistics, least and most used modules, 
and eventually help inform future Label iterations. More importantly, a repository of 
this sort could act as an index of datasets without hosting the datasets themselves. For 
instance, API calls to such a repository could help locate datasets with queries like “MIT 
license dataset for facial recognition with >100k samples.” 
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Beyond its utility as a tool, the Label could also drive a change in norms. Through using 
the Label, data specialists will build a habit around questioning datasets through analysis 
and interrogation techniques, even if a particular dataset does not include a Label. In 
time, the Label will facilitate an environment that encourages a broad spectrum of 
dataset creators, cleaners, publishers, and users to create Labels to publish alongside 
their datasets. This would lead to better identification of issues with data and bias, or 
inappropriate data collection practices, which in turn would increase data and dataset 
quality overall. 

Looking beyond the Label itself, there are longer term opportunities for this framework 
and the data science community. Decisions made around the authorship and ownership 
model for the Label will be critical to the overall direction of the project; who will create 
these Labels going forward, and who will maintain them? Will there be a single place 
where all labels live or from where they are all linked? Additional future directions could 
include: building a public consortium or governing body to consider standards across 
the industry; creating curriculum for those collecting and working with datasets; and 
further exploration of appropriate ground truth data.

Conclusions

In an effort to improve the current state of practice of data analysis, we created the 
Dataset Nutrition Label, a diagnostic framework that provides a concise yet robust and 
standardized view of the core components of a dataset. We use the ProPublica Dollars 
for Docs dataset to create the Label prototype.

The Label serves as a proof of concept for several conceptual questions, beginning with 
the general feasibility of an extensible and diverse modular framework. It also confirms 
the possibility of mixing qualitative and quantitative modules that leverage different 
statistical and probabilistic modelling backend technologies in the same overall user 
experience. The Label integrates both static and interactive modules, underscoring the 
importance of using an interactive platform (such as a website) for the distribution of 
the Label itself. Together, this promises flexibility, scalability, and adaptability.

With the Label, data specialists can efficiently compare, select, and interrogate datasets. 
Additionally, certain modules afford the ability to check for issues with the dataset 
before and during model development, surface anomalies and potentially dangerous 
proxies, and find new insights into the data at hand. As a result, data specialists have a 
better, more efficient process of data interrogation, which will produce higher quality 
AI models. The Label is a useful, practical, timely, and necessary intervention in the 
development of AI models, and a first step in a broader effort toward improving the 
outcomes of AI systems that play an increasingly central role in our lives.
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In their study, McKinney et al. showed the high potential of artificial intelligence 
for breast cancer screening. However, the lack of methods’ details and computer 
code undermines its scientific value. We identify obstacles hindering transparent and 
reproducible artificial intelligence (AI) research as faced by McKinney et al.. and provide 
solutions with implications for the broader field.

The work by McKinney et al.1 demonstrates the potential of AI in medical imaging, while 
highlighting the challenges of making such work reproducible. The authors assert that 
their system improves the speed and robustness of breast cancer screening, generalizes 
to populations beyond those used for training, and outperforms radiologists in specific 
settings. Upon successful prospective clinical validation and approval by regulatory 
bodies, this new system holds great potential for streamlining clinical workflows, 
reducing false positives, and improving patient outcomes. However, the absence of 
sufficiently documented methods and computer code underlying the study effectively 
undermines its scientific value. This shortcoming limits the evidence required for others 
to prospectively validate and clinically implement such technologies. Here, we identify 
obstacles hindering transparent and reproducible AI research as faced by McKinney et 
al. and provide potential solutions with implications for the broader field.

Scientific progress depends upon the ability of independent researchers to (1) scrutinize 
the results of a research study, (2) reproduce the study’s main results using its materials, 
and (3) build upon them in future studies2. Publication of insufficiently documented 
research does not meet the core requirements underlying scientific discovery3,4. Merely 
textual descriptions of deep learning models can hide their high level of complexity. 
Nuances in the computer code may have dramatic effects on the training and evaluation 
of results5, potentially leading to unintended consequences6. Therefore, transparency in 
the form of the actual computer code used to train a model and arrive at its final set of 
parameters is essential for research reproducibility. The authors state “The code used for 
training the models has a large number of dependencies on internal tooling, infrastructure 
and hardware, and its release is therefore not feasible”. Computational reproducibility 
is indispensable for high-quality AI applications7,8; more complex methods demand 
greater transparency9. In the absence of code, reproducibility falls back on replicating 
methods from textual description. Although, the authors claim that “all experiments and 
implementation details are described in sufficient detail in the Supplementary Methods section 
to support replication with non-proprietary libraries”, key details about their analysis are 
lacking. Even with extensive description, reproducing complex computational pipelines 
based purely on text is a subjective and challenging task10.
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Table 1. Essential hyperparameters for reproducing the study for each of the three models (Lesion, Breast, and Case), 
including those missing from the description in Mckinney et al.

Lesion Breast Case
Learning rate Missing 0.0001 Missing
Learning rate schedule Missing Stated Missing
Optimizer Stochastic gradient descent 

with momentum
Adam Missing

Momentum Missing Not applicable Not applicable
Batch size 4 Unclear 2
Epochs Missing 120,000 Missing

In addition to the reproducibility challenges inherent to purely textual descriptions of 
methods, the authors’ description of the model development as well as data processing 
and training pipelines lacks critical details. The definitions of multiple hyperparameters 
for the model’s architecture (composed of three networks referred to as the Breast, 
Lesion, and Case models) are missing (Table 1). In their original publication, the authors 
did not disclose the settings for the augmentation pipeline; the transformations used 
are stochastic and can significantly affect model performance11. Details of the training 
pipeline were also missing. Without this key information, independent reproduction of 
the training pipeline is not possible.

There exist numerous frameworks and platforms to make artificial intelligence research 
more transparent and reproducible (Table 2). For the sharing of code, these include 
Bitbucket, GitHub, and GitLab among others. The multiple software dependencies of 
large-scale machine learning applications require appropriate control of the software 
environment, which can be achieved through package managers including Conda, 
as well as container and virtualization systems, including Code Ocean, Gigantum, 
Colaboratory, and Docker. If virtualization of the McKinney et al. internal tooling proved 
to be difficult, they could have released the computer code and documentation. The 
authors could have also created small artificial examples or used small public datasets12 
to show how new data must be processed to train the model and generate predictions. 
Sharing the fitted model (architecture along with learned parameters) should be simple 
aside from privacy concerns that the model may reveal sensitive information about the 
set of patients used to train it. Nevertheless, techniques for achieving differential privacy 
exist to alleviate such concerns. Many platforms allow sharing of deep learning models, 
including TensorFlow Hub, ModelHub.ai, ModelDepot, and Model Zoo with support 
for multiple frameworks such as PyTorch and Caffe, as well as the TensorFlow library 
used by the authors. In addition to improving accessibility and transparency, such 
resources can significantly accelerate model development, validation, and transition into 
production and clinical implementation.
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Table 2. Frameworks and platforms to share code, software dependencies and deep learning models to make artificial 
intelligence research more transparent and reproducible.

Resource URL
Code
BitBucket https://bitbucket.org
GitHub https://github.com
GitLab https://about.gitlab.com
Software dependencies
Conda https://conda.io
Code Ocean https://codeocean.com
Gigantum https://gigantum.com
Colaboratory https://colab.research.google.com
Docker https://www.docker.com 
Deep learning models
TensorFlow Hub https://www.tensorflow.org/hub
ModelHub http://modelhub.ai
ModelDepot https://modeldepot.io
Model Zoo https://modelzoo.co
Deep learning frameworks
TensorFlow https://www.tensorflow.org/
Caffe https://caffe.berkeleyvision.org/
PyTorch https://pytorch.org/

Another crucial aspect of ensuring reproducibility lies in access to the data the models 
were derived from. In their study, McKinney et al. used two large datasets under 
license, properly disclosing this limitation in their publication. Sharing of patient health 
information is highly regulated due to privacy concerns. Despite these challenges, sharing 
of raw data has become more common in biomedical literature, increasing from under 
1% in the early 2000s to 20% today13. However, if the data cannot be shared, the model 
predictions and data labels themselves should be released, allowing further statistical 
analyses. Above all, concerns about data privacy should not be used as a smokescreen to 
distract from the requirement to release code.

Although sharing of code and data is widely seen as a crucial part of scientific research, 
the adoption varies across fields. In fields such as genomics, complex computational 
pipelines and sensitive datasets have been shared for decades14. Guidelines related to 
genomic data are clear, detailed, and most importantly, enforced. It is generally accepted 
that all code and data are released alongside a publication. In other fields of medicine 
and science as a whole, this is much less common, and data and code are rarely made 
available. For scientific efforts where a clinical application is envisioned and human lives 
would be at stake, we argue that the bar of transparency should be set even higher. If a 
dataset cannot be shared with the entire scientific community, because of licensing or 
other insurmountable issues, at a minimum a mechanism should be set so that some 
highly-trained, independent investigators can access the data and verify the analyses.
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The lack of access to code and data in prominent scientific publications may lead to 
unwarranted and even potentially harmful clinical trials15. These unfortunate lessons 
have not been lost on journal editors and their readers. Journals have an obligation to 
hold authors to the standards of reproducibility that benefit not only other researchers, 
but also the authors themselves. Making one’s methods reproducible may surface biases 
or shortcomings to authors before publication6. Preventing external validation of a 
model will likely reduce its impact, as it also prevents other researchers from using and 
building upon it in future studies. The failure of McKinney et al. to share key materials 
and information transforms their work from a scientific publication open to verification 
and adoption by the scientific community into a promotion of a closed technology.

We have high hopes for the utility of AI methods in medicine. Ensuring that these 
methods meet their potential, however, requires that these studies be scientifically 
reproducible. The recent advances in computational virtualization and AI frameworks 
are greatly facilitating the implementations of complex deep neural networks in a more 
structured, transparent, and reproducible way. Adoption of these technologies will 
increase the impact of published deep learning algorithms and accelerate the translation 
of these methods into clinical settings. 
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Artificial intelligence (AI) has demonstrated remarkable progress in the detection, 
diagnosis, and treatment of diseases. Deep learning, a subset of machine learning based on 
artificial neural networks, has enabled applications with performance levels approaching 
those of trained professionals in tasks including the interpretation of medical images and 
discovery of drug compounds1. Not surprisingly, most AI developments in healthcare 
cater to the needs of high-income countries (HICs) where the majority of research is 
conducted. Conversely, very little is discussed about what AI can bring to medical practice 
in low- and middle-income countries (LMICs) where workforce shortages and limited 
resources constrain the access to and delivery of care. AI could play an important role 
in addressing global healthcare inequities at the individual patient, health system, and 
population levels. However, challenges in developing and implementing AI applications 
must be addressed ahead of widespread adoption and measurable impact. 

Health conditions in LMICs and HICs are rapidly converging, as indicated by the recent 
shift of the global disease burden from infectious diseases to chronic non-communicable 
diseases (NCDs, including cancer, cardiovascular disease, and diabetes)2. Both contexts 
also face similar challenges, such as physician burnout due to work-related stress3, 
inefficiencies in clinical workflows, inaccuracies in diagnostic tests, and increases in 
hospital-acquired infections. Despite these similarities, more basic needs remain unmet 
in LMICs. These include healthcare workforce shortages, particularly specialist medical 
professionals such as surgical oncologists and cardiac care nurses. Patients often face 
limited access to drugs, diagnostic imaging hardware (e.g., ultrasound, X-ray), and 
surgical infrastructures (operating theatres, devices, anesthesia). When equipment is 
available, LMICs often lack the technical expertise needed to operate, maintain, and 
repair it. As a result, 40% of medical equipment in LMICs is out of service4. Conditions 
are exacerbated in fields that require both specialized workforce and equipment. For 
example, radiotherapy requires a team of radiation oncologists, medical physicists, 
dosimetrists, and radiation therapists - together with sophisticated particle accelerator 
equipment. Consequently, more than 50% of cancer patients requiring radiotherapy in 
LMICs lack access to this relatively affordable and effective treatment modality, with 
this number reaching 90% in some low income countries5. 

LMICs have undertaken substantial healthcare spending increases, saving millions of 
lives by improving access to clean water, vaccinations, and HIV treatments. However, 
changes in healthcare needs owing to increased mortality from complex NCDs require 
high-quality, longitudinal, and integrated care6. These emerging challenges have been 
central to the United Nations’ Sustainable Development Goals, including the aim to 
reduce by one third premature mortality from NCDs by 2030. AI has the potential to 
fuel and sustain efforts towards these ambitious goals.

Healthcare-related AI interventions in LMICs can be broadly divided into three 
application areas (Figure 1). The first includes AI-powered low-cost tools running on 
smartphones or portable instruments. These mainly address common diseases and are 
operated by non-specialist community health workers (CHWs) in off-site locations 
including local centers and households. CHWs may use AI recommendations to triage 
patients and identify those requiring close follow-up. Such AI applications include 
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diagnosing skin cancer from photographic images and analyzing peripheral blood 
samples to diagnose malaria7; more are expected given the emergence of pocket diagnostic 
hardware, including ultrasound probes and microscopes. With increasing smartphone 
penetration, patient-facing AI applications may guide lifestyle and nutrition, allow 
symptom self-assessment, and provide advice during pregnancy or recovery periods. 
Such applications may allow patients to take control of their own health and thereby 
reduce the burden on limited health systems. 

 those requiring close follow-up. Such AI applications include diagnosing skin cancer from 
 photographic images and analyzing peripheral blood samples to diagnose malaria  7  ; more are 
 expected given the emergence of pocket diagnostic hardware, including ultrasound probes and 
 microscopes. With increasing smartphone penetration, patient-facing AI applications may guide 
 lifestyle and nutrition, allow symptom self-assessment, and provide advice during pregnancy or 
 recovery periods. Such applications may allow patients to take control of their own health and 
 thereby reduce the burden on limited health systems. 

 Figure 1:  Figure depicting health care problems in  low- and middle-income countries, artificial 
 intelligence application areas, and implementation challenges. 

 The second application area focuses on more specialized medical needs, with the goal 
 of supporting clinical decision-making. AI may allow non-specialized primary care physicians to 
 perform specialized tasks including reading diagnostic radiology and pathology images, only 
 referring to specialists if necessary. As such, the availability of equipment for image capture is a 
 prerequisite for these applications. AI tools may also help provide specialists with expert 
 knowledge across multiple subspecialties. This is particularly important in oncology, for 
 example, oncology, where lack of subspecialists may force an oncologist to manage multiple 
 anatomical tumor sites, and thus deliver care of inferior quality due to the constantly varying 
 scope of services. In radiotherapy, for example, semi-automation of the treatment planning 
 process may speed up treatment delivery, increase patient intake, and allow greater focus on 
 the clinical nuances of patient management - all without requiring additional personnel. Although 
 AI does not directly address diagnostic and therapeutic equipment shortage, AI integration into 
 equipment design may help non-technical operators better troubleshoot and address issues 
 when service technicians are scarce. By analyzing historic maintenance data, AI may also help 
 sustain long-term operations by predicting failures and avoiding lengthy lead times on spare 
 parts and consumables. 
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Figure 1. Figure depicting health care problems in low- and middle-income countries, artificial intelligence application 
areas, and implementation challenges.

The second application area focuses on more specialized medical needs, with the goal 
of supporting clinical decision-making. AI may allow non-specialized primary care 
physicians to perform specialized tasks including reading diagnostic radiology and 
pathology images, only referring to specialists if necessary. As such, the availability of 
equipment for image capture is a prerequisite for these applications. AI tools may also 
help provide specialists with expert knowledge across multiple subspecialties. This is 
particularly important in oncology, for example, oncology, where lack of subspecialists 
may force an oncologist to manage multiple anatomical tumor sites, and thus deliver care 
of inferior quality due to the constantly varying scope of services. In radiotherapy, for 
example, semi-automation of the treatment planning process may speed up treatment 
delivery, increase patient intake, and allow greater focus on the clinical nuances of patient 
management - all without requiring additional personnel. Although AI does not directly 
address diagnostic and therapeutic equipment shortage, AI integration into equipment 
design may help non-technical operators better troubleshoot and address issues when 
service technicians are scarce. By analyzing historic maintenance data, AI may also help 
sustain long-term operations by predicting failures and avoiding lengthy lead times on 
spare parts and consumables. 
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The third application area relates to population health and allows public agencies to 
realize cause-and-effect relationships, appropriately allocate often limited resources, and 
ultimately mitigate the progression of epidemics8. Improving data collection practices in 
LMICs is central to these applications. For example, AI may help maintain up-to-date 
national cancer registries. Automated registry curation, by extracting standard data from 
unstructured free-form text found in radiology and pathology reports, may help reduce 
labor costs that account for more than 50% of all registry activity expenses9. Other 
applications include identifying hotspots for potential disease outbreaks in unmapped 
rural areas by utilizing AI-powered analysis of aerial photography and weather patterns, 
as well as planning and optimizing CHWs’ household visiting schedules. Although 
these applications may prompt immediate actionable interventions, their translation 
into effective long-term health policies remains unclear.

HIC-based AI applications in healthcare are far from perfect. Most are at the proof-of-
concept stage and require further demonstration of utility through clinical validation in 
prospective trials. The underlying methods are often uninterpretable, making it difficult 
to predict failures and critically assess results. Data used to train AI models are almost 
entirely collected within HICs, and models are hence skewed towards certain diseases, 
demographics, and geographies. With varying degrees of statistical data analysis and 
quality control, errors and systematic biases are introduced into models thereby limiting 
their generalizability, especially when deployed in different contexts. Ethical concerns 
about the use of AI in healthcare include undermining patient data privacy protections, 
exacerbating the existing tension between providing care and generating profit, as 
well as introducing a third party into the patient-doctor relationship, which changes 
expectations of confidentiality and responsibility10. From a regulatory perspective, 
medical malpractice and liabilities in health-related algorithmic decision-making are 
yet to be formulated. Nearly all AI tools in healthcare are single-task applications, and 
so they are incapable of fully substituting for health professionals who carry out a wide 
variety of tasks. Understanding these limitations may help avoid falling prey to hype and 
inflated expectations.

Introducing AI tools in resource-constrained settings presents additional challenges. 
The distinct needs, diseases, demographics, and standards of care in LMICs must be 
acknowledged through identifying specific use cases where AI involvement would 
have the greatest impact. Data for AI training and validation must be context-specific: 
Computer vision systems may be required to work with legacy data formats (e.g., film 
versus digital X-ray), whereas developing chatbots will require compiling corpora in 
local languages, including medical terminology. Solutions must also be context-specific. 
For example, an automated system should not recommend treatment options that are 
unavailable locally or come at prohibitively high costs. Moreover, human factors should 
be considered: What levels of skill, education, and computer literacy are required of end 
users? The amount of behavioral change needed to raise awareness and confidence in AI 
systems should also be addressed, enabling users to recognize limitations and accurately 
interpret results. Infrastructure constraints should be assessed including the availability 
of devices for serving AI applications, reliability of internet connectivity and bandwidth, 
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electrical power availability, amount and quality of existing digital data, as well as future 
data digitization efforts. 

Multiple digital initiatives have been proposed to enhance access to and quality of 
healthcare in LMICs. These include technologies to support healthcare practices using 
electronic processes (eHealth) and remote telecommunications (teleHealth), an example 
of which is mobile health (mHealth) using mobile phones and tablets. Best practices and 
recommendations for scaling these initiatives in LMICs have been established based on 
real-life experiences, including the World Health Organization’s mHealth Assessment 
and Planning for Scale (MAPS) Toolkit11. These relatively mature efforts could provide 
learning opportunities for similar digital AI applications. Many of the challenges faced 
by integrating electronic medical records (EMRs) in LMICs, for example, are likely to 
also impede AI applications, including limited funding, poor infrastructure for reliably 
delivering technologies, and discontinuous participation from users12. Integration 
opportunities could also be considered: an existing mHealth application for patient-
physician remote communication can be enhanced with an AI chatbot to triage patients 
prior to the consultation.

There is skepticism about the value of introducing AI in LMICs given the need to 
prioritize investments in basic infrastructure13. AI-driven interventions should not be 
evaluated in isolation nor should they be regarded as a universal panacea: Although AI 
development may require sizable initial investments, the marginal cost of providing an 
existing AI software service to one more user is miniscule, giving it such applications 
economical scalability. An AI application may also utilize the same deployment channels 
used by existing digital technologies in LMICs, making it almost readily deployable and 
reducing infrastructure spending. 

Given careful strategic planning of development and implementation efforts fronts, 
AI solutions could promise to help address major challenges in global health. 
Ultimately, AI interventions in LMICs should be initiated, owned, and administered 
by local stakeholders from end users to health agencies - with HICs providing funding, 
expertise, and advice when needed. AI literacy may be included in existing global health 
educational programs to raise awareness about its capabilities and pitfalls. Empowering 
local technical AI talent will also be crucial, and may be accelerated through high-quality 
free educational resources available online from massive open online courses (MOOC). 
AI implementation will require rethinking existing regulatory frameworks. For example, 
the training and scope of practice of CHWs may be expanded to include, for example, 
screening and diagnosing NCDs14. Investment areas critical to bringing AI into LMICs 
must also be identified, as well as gathering evidence on the impact of AI solutions15. 
Uneven distribution of the access to technologies has created a digital divide between 
the rich and poor, while contributing to existing global inequities. AI could emerge as 
a socially responsible technology with inherent equity - benefiting humanity across the 
globe.
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The goal of improving cancer care efficacy and efficiency is an ultimate driver of new 
technologies and innovations into the clinic. The ever increasing amount of healthcare 
data generated as a result of increasing demand for health services has prioritized the need 
to optimize and streamline clinical workflows. From the early days of X-ray imaging in 
the 1890s to more recent advances in CT, MR and PET scanning, medical imaging 
continues to be a pillar of cancer diagnosis and treatment. Current advances in imaging 
hardware - in terms of quality, sensitivity and resolution - enable the discrimination of 
minute differences in tissue densities. AI methods offer the opportunity to transform 
medical image interpretation from a subjective task to one that is quantitative and 
reproducible. Moreover, AI may identify imaging features that are difficult to recognize 
by a trained eye and hence support clinical decision making. Within cancer imaging 
specifically, the ability to automatically detect, characterize, and monitor tumors in 
imaging data will have a profound impact on our fight against cancer. This final chapter 
will provide an overall discussion of results within this thesis, as well as outline challenges 
that lie ahead of widespread clinical adoption of AI tools.

 The goal of improving cancer care efficacy and efficiency is an ultimate driver of new 
 technologies and innovations into the clinic. The ever increasing amount of healthcare data 
 generated as a result of increasing demand for health services has prioritized the need to 
 optimize and streamline clinical workflows. From the early days of X-ray imaging in the 1890s to 
 more recent advances in CT, MR and PET scanning, medical imaging continues to be a pillar of 
 cancer diagnosis and treatment. Current advances in imaging hardware - in terms of quality, 
 sensitivity and resolution - enable the discrimination of minute differences in tissue densities. AI 
 methods offer the opportunity to transform medical image interpretation from a subjective task to 
 one that is quantitative and reproducible. Moreover, AI may identify imaging features that are 
 difficult to recognize by a trained eye and hence support clinical decision making. Within cancer 
 imaging specifically, the ability to automatically detect, characterize, and monitor tumors in 
 imaging data will have a profound impact on our fight against cancer. This final chapter will 
 provide an overall discussion of results within this thesis, as well as outline challenges that lie 
 ahead of widespread clinical adoption of AI tools. 

 Figure 1:  Bridging the AI translational gap between  initial model development and routine 
 clinical cancer care by emphasizing and demonstrating three essential concepts: clinical validity, 
 utility, and usability. 

 PART 1: ARTIFICIAL INTELLIGENCE IN CANCER IMAGING 

 Narrow-task AI applications interacting at specific touchpoints along the cancer care path were 
 discussed in  Chapter 2  , together with the increasing  cancer datastreams and advances in 
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Figure 1. Bridging the AI translational gap between initial model development and routine clinical cancer care by 
emphasizing and demonstrating three essential concepts: clinical validity, utility, and usability. 
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PART 1: Artificial Intelligence in Cancer Imaging

Narrow-task AI applications interacting at specific touchpoints along the cancer care 
path were discussed in Chapter 2, together with the increasing cancer datastreams 
and advances in computational algorithms that have well positioned AI to improve 
clinical oncology. While there are a number of promising AI applications for clinical 
oncology in development, substantial challenges remain to bridge the gap to clinical 
translation. These challenges often relate to the clinical validity, utility, and usability of 
the AI application (Figure 1). Validity refers to efficacy measures and validation ranging 
from in silico retrospective experiments to prospective studies and randomized clinical 
trials. Utility puts the user front and center by examining the ease of use, ergonomics, 
and interoperability of the proposed solution. Usability outlines the value proposition to 
all stakeholders, ensuring solutions are improving patient outcomes and quality of life, 
while also enabling potential time and cost savings for administrators. Incorporation 
of these concepts into model design and evaluation is easy to overlook, yet is critical to 
move clinical AI beyond the research and development stage into real-world cancer care.

AI applications at the intersection of radiology and oncology were then explored in 
Chapter 3. In addition to the automation of tumor detection, characterization, and 
monitoring in imaging data, this chapter also discussed AI interventions in image 
reconstruction, registration, and report generation (Figure 2). 

 computational algorithms that have well positioned AI to improve clinical oncology. While there 
 are a number of promising AI applications for clinical oncology in development, substantial 
 challenges remain to bridge the gap to clinical translation. These challenges often relate to the 
 clinical validity, utility, and usability of the AI application  (Figure 1)  . Validity refers to efficacy 
 measures and validation ranging from in silico retrospective experiments to prospective studies 
 and randomized clinical trials. Utility puts the user front and center by examining the ease of 
 use, ergonomics, and interoperability of the proposed solution. Usability outlines the value 
 proposition to all stakeholders, ensuring solutions are improving patient outcomes and quality of 
 life, while also enabling potential time and cost savings for administrators. Incorporation of these 
 concepts into model design and evaluation is easy to overlook, yet is critical to move clinical AI 
 beyond the research and development stage into real-world cancer care. 

 AI applications at the intersection of radiology and oncology were then explored in 
 Chapter 3  . In addition to the automation of tumor  detection, characterization, and monitoring in 
 imaging data, this chapter also discussed AI interventions in image reconstruction, registration, 
 and report generation  (Figure 2)  . 

 Figure 2:  AI impacts areas within oncology imaging.  This schematic outlines the various tasks 
 within radiology where AI implementation is likely to have a large impact. 
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Figure 2. AI impacts areas within oncology imaging. This schematic outlines the various tasks within radiology where AI 
implementation is likely to have a large impact.
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The chapter also highlighted challenges facing clinical implementation. These included 
the availability of data. Indeed, large amounts of medical data are available, and are 
stored in such a manner that enables relatively easy access and retrieval. However, such 
data is rarely curated and this represents a major bottleneck in attempting to develop 
any AI model. It is imperative that such curation is performed by a trained reader to 
ensure credibility - making the process expensive and time consuming. Other challenges 
include the inability for human operators to interpret many deep learning algorithms, 
often being referred to as ‘black-box medicine’. In addition to eroded trust, this makes 
it difficult to predict failures, isolate the logic for a specific conclusion, or troubleshoot 
problems. From a regulatory perspective, agencies such as the FDA have been regulating 
computer-aided detection/diagnosis systems that rely on machine learning and pattern 
recognition techniques since the earliest days of computing. However, it is the shift to 
deep learning that now poses new regulatory challenges and requires new guidance for 
submissions seeking approval. Even after going to market, deep learning methods evolve 
over time as more data is processed and learned from. Thus, it is crucial to understand 
the implications of such lifelong learning in these adaptive systems.

Chapter 4 explored the intersection of AI with radiotherapy (RT), an image-based 
cancer treatment modality. RT plays a critical role in the treatment of cancer, and is 
indicated in ~50% of cancer patients. RT has become increasingly complex over the past 
few decades requiring near complete reliance on human-machine interaction including 
both software and hardware. Beyond gains in accuracy, reproducibility and consistency, 
partnering human intuition and the capacity of AI to handle large data sets has the 
potential to drastically improve efficiency and throughput in RT. 

 The chapter also highlighted challenges facing clinical implementation. These included 
 the availability of data. Indeed, large amounts of medical data are available, and are stored in 
 such a manner that enables relatively easy access and retrieval. However, such data is rarely 
 curated and this represents a major bottleneck in attempting to develop any AI model. It is 
 imperative that such curation is performed by a trained reader to ensure credibility - making the 
 process expensive and time consuming. Other challenges include the inability for human 
 operators to interpret many deep learning algorithms, often being referred to as  ‘black-box 
 medicine  ’. In addition to eroded trust, this makes  it difficult to predict failures, isolate the logic for 
 a specific conclusion, or troubleshoot problems. From a regulatory perspective,  agencies such 
 as the FDA have been regulating computer-aided detection/diagnosis systems that rely on 
 machine learning and pattern recognition techniques since the earliest days of computing. 
 However, it is the shift to deep learning that now poses new regulatory challenges and requires 
 new guidance for submissions seeking approval. Even after going to market, deep learning 
 methods evolve over time as more data is processed and learned from. Thus, it is crucial to 
 understand the implications of such lifelong learning in these adaptive systems. 

 Chapter 4  explored the intersection of AI with radiotherapy  (RT), an image-based cancer 
 treatment modality. RT plays a critical role in the treatment of cancer, and is indicated in ~50% 
 of cancer patients. RT has become increasingly complex over the past few decades requiring 
 near complete reliance on human-machine interaction including both software and hardware. 
 Beyond gains in accuracy, reproducibility and consistency, partnering human intuition and the 
 capacity of AI to handle large data sets has the potential to drastically improve efficiency and 
 throughput in RT. 

 Figure 3:  Members of the RT workforce (therapists,  radiation oncologists, medical physicists 
 and dosimetrists) are shown along a spectrum of interactions with patients and computers. Our 
 projection of how each profession is expected to evolve with the clinical integration of AI tools is 
 shown and described. 
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Figure 3. Members of the RT workforce (therapists, radiation oncologists, medical physicists and dosimetrists) are shown 
along a spectrum of interactions with patients and computers. Our projection of how each profession is expected to 
evolve with the clinical integration of AI tools is shown and described.
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This chapter also highlighted challenges related to AI integration into the RT workflow 
including data curation as previously noted with radiology. The chapter also touched on 
the proprietary nature of the RT treatment planning software as another hurdle facing 
the development of AI solutions. Finally, the chapter noted future directions including 
the move towards AI tools for predicting patient outcomes, including radiation-specific 
outcomes (e.g. tumor control, radiation toxicities) as an RT precision medicine approach.

Another important aspect discussed in chapter 4 is the evolution of roles of existing 
medical RT staff as the shift toward AI integration unfolds over the next few decades 
(Figure 3). AI will predominantly impact staff members that perform “back-of-house” 
activities, including the technical aspects of RT such as image segmentation, plan 
design, and quality assurace, with less of an impact on “front-of-house” activities, that 
have direct interaction with the patient, typically carried out by physicians, therapists 
and nurses.

PART 2: Prognostic and Therapeutic Deep Learning Applications

Chapter 5 explored deep learning applications in lung cancer imaging for the automated 
quantification of radiographic characteristics and potentially improving patient 
prognostication. We found that deep learning features significantly outperform existing 
prognostication methods in surgery patients, hinting at their utility in patient stratification 
and potentially sparing low mortality risk groups from adjuvant chemotherapy. We also 
demonstrated that areas within and beyond the tumor - especially the tumor-stroma 
interfaces - had the largest contributions to the prognostic signature, highlighting the 
importance of tumor-surrounding tissue in patient stratification. Our preliminary 
genomic associations in this study suggest correlations between the deep learning feature 
representations and cell cycle and transcriptional processes. Despite their obscure inner 
workings and lack of a strong theoretical backing, deep learning networks demonstrated 
a prognostic signal and robustness against specific noise artifacts. This motivates further 
prospective studies validating their utility in patient stratification and the development 
of personalized cancer treatment plans.

Next, deep learning was leveraged to develop models for enhancing pathologist accuracy 
and productivity in Chapter 6. Building on data collected through the Boston Lung 
Cancer Survival cohort, we created deep learning models that can act as non-invasive 
pathological biomarkers for NSCLC. We trained a convolutional neural network (CNN) 
to stratify patients into 2 groups based on lung cancer histology. We also found that 
the CNN-derived CT-radiomics features represented distinct biologic and diagnostic 
patterns in this cohort, and were associated with underlying tumor microanatomy. 
This preliminary work has the potential to enhance the human-based decision tree for 
NSCLC histologic classification, and non-invasive elucidation of tumor biology using 
radiographic CT data.

In chapter 7, we demonstrated that deep learning can perform automated quantification 
of radiographic characteristics of tumor phenotypes as well as monitor changes in 
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tumors, before, during, and after treatment in a quantitative manner. More specifically, 
we illustrated the ability of deep learning networks to predict prognostic endpoints 
of patients treated with radiation therapy using serial CT imaging routinely obtained 
during follow-up. We also highlighted their potential in accounting for and utilizing the 
available serial images to extract the relevant time-point and image features pertinent 
to the prediction of survival and response to treatment. This provides further insight 
into applications including the detection of gross residual disease without surgical 
intervention, as well as other personalized medicine practices.

We then presented a clinical validation framework for therapeutic AI algorithms and 
demonstrated its application in RT targeting in chapter 8. We performed an integrative 
analysis on eight independent datasets (2208 patients) across four focus areas: 
benchmarking, primary and secondary validation, as well as human subject experiments. 
Utilizing a discovery cohort of 787 patients, we developed multiple DL models for 
localizing and segmenting primary NSCLC tumors and involved lymph nodes in CT 
images. We then established an interobserver benchmark across six radiation oncologists, 
followed by an intraobserver benchmark across images segmented by the same radiation 
oncologist. Primary validation was carried out across 1421 patients including both 
internal and external cohorts, RT clinical trial data, as well as diagnostic radiology 
images. Secondary validation was conducted across multiple datasets including test-
retest and thorax phantom images. Therein, we assessed the dosimetric and metabolic 
impact of AI segmentations, as well as measured their stability and accuracy. Finally, 
in order to gauge the clinical utility of AI segmentations, we carried out a human 
subject experiment. In a simulated clinical setting, eight radiation oncologists from our 
institution were asked to perform the segmentation task de novo as well as rate and edit 
a provided AI segmentation.

PART 3: AI Methods and Best Practices

Chapter 9 drew parallels between traditional radiomic methods and their deep learning-
based counterparts. We posited that deep learning can emerge as an independent 
methodology that does not need to rely on handcrafted radiomics to move forward. 
We outlined how combining traditional radiomic features into deep learning models 
risks incorporating known human biases into the modelling efforts. We also argued 
that such a combined approach does not address interpretability issues since even 
most mathematically-derived handcrafted features capture uninterpretable imaging 
characteristics that cannot be discerned by the human eye. 

Chapter 10 introduced the Dataset Nutrition Label, a diagnostic framework that 
provides a concise yet robust and standardized view of the core components of a dataset. 
A growing body of research points to AI systems deployed in a wide range of use cases, 
where algorithms trained on biased, incomplete, or ill-fitting data produce problematic 
results. Despite the increased critical attention, data interrogation continues to be a 
challenging task with many issues being difficult to identify and rectify. Algorithms often 
come under scrutiny only after they are developed and deployed, which exacerbates 
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this problem and underscores the need for better data vetting practices earlier in the 
development pipeline. With the Label, data specialists can efficiently compare, select, 
and interrogate datasets. We also identified some challenges of the Label, including 
generalizing across diverse datasets, as well as discussed research and public policy 
agendas to further advocate its adoption and ultimately improve the AI development 
ecosystem.

Chapter 11 highlighted the consequences of unpublished code and data in AI 
publications. In addition to hindering the verification and adoption of scientific findings 
by the community, lack of reproducibility may lead to unwarranted and potentially 
harmful clinical trials. The chapter identified various methods for authors to disseminate 
their works in a transparent manner while abiding by data privacy laws - especially when 
dealing with sensitive medical data.

PART 4: Beyond Cancer Imaging
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Figure 4. Figure depicting health care problems in low- and middle-income countries, artificial intelligence application 
areas, and implementation challenges.

Finally, Chapter 12 explored the framing of AI as a socially responsible technology 
that promises to address healthcare inequalities. The chapter identified three AI 
application areas in low- and middle-income countries, namely in portable diagnostics, 
clinical decision support, and population health. The chapter also outlined challenges 
in developing and implementing global health AI applications, those that must be 
addressed ahead of widespread adoption and measurable impact (Figure 4). 
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Aligning research methodologies is crucial in accurately assessing the impact of AI 
on patient outcome. In addition to ensuring reproducibility and generalizability, 
utilizing agreed-upon benchmarking datasets, performance metrics, standard imaging 
protocols and reporting formats will level the experimentation field and enable unbiased 
comparison indicators. AI is unlike human intelligence in many ways; excelling in one 
task does not imply excellence in others. As a result, the promise of up and coming AI 
methods should not be overstated. Almost all state-of-the-art AI advances fall under 
the narrow category, where AI is trained for one task and one task only - with only a 
handful exceeding human intelligence. While such advances may excel in interpreting 
sensory perceptual information in a bottom-up fashion, they lack higher level, top-down 
knowledge of contexts as well as fail to make associations in the same way a human 
brain does. It is therefore evident that the field is still in its infancy and hype should 
be replaced with rational thinking and mindful planning. AI is also unlikely to replace 
oncologists within the near or even distant future. The roles of radiologists will expand as 
they become more connected to technology and have access to better tools. Radiologists 
are also likely to emerge as critical elements in AI development, contributing knowledge 
and overseeing efficacy. As AI exceeds human performance, we expect it to evolve into a 
valuable educational resource. Human operators will oversee outcomes and also seek to 
interpret the reasoning behind them. This can serve as a means of validation, as well as 
discovering hidden information that might have been overlooked.

In contrast to prior state-of-the-art AI often locked within proprietary commercial 
packages, we find that virtually all deep learning software tools available today are open-
source. This continues to foster experimentation on a massive scale given the lower 
barriers to entry and utilization. In terms of data, AI development is expected to shift 
from processed medical images to raw acquisition data. As raw data is downsampled and 
optimized for human viewers, loss of information is inevitable and may be avoidable 
when analysis is run by machines. Some caveats here include reduced interpretability 
and impeded human validation. As we generate more data, more signal and noise 
are present. The process of discerning signal from noise is expected to become more 
challenging over time. Given the difficulties in curating and labelling data, we foresee 
a push towards unsupervised learning techniques to fully utilize the vast archives of 
unlabeled medical data. 

Open questions include the ambiguity of who controls AI and is ultimately responsible 
for its decisions, the nature of the interface between AI and healthcare professionals, 
and whether implementation of an early regulatory policy will cripple AI innovations. 
Enabling interoperability amongst the vast array of AI applications currently scattered 
across healthcare will result in a powerful clinical decision-making network. This AI 
web will not only function at the tool deployment level, but also at the life-long training 
level. We advocate for creating an interconnected network of deidentified patient data 
from across the world. Using data on such a scale to train AI models will enable robust 
and generalizable AI across different patient demographics, geographic regions, diseases, 
and standards of care. Only then will we see a socially responsible AI benefiting the 
many and not the few.
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Summary

This thesis explored imaging-based applications of deep learning methods in diagnosing 
and treating non-small cell lung cancer (NSCLC) patients. It comprises a mixture of 
perspective review articles as well as experimental studies on routine patient imaging 
data.

PART 1: Artificial Intelligence in Cancer Imaging

Part 1 provided an overarching introduction into the topic through a collection of three 
perspective articles. Chapter 2 reviewed a selection of AI applications in oncology from 
the lens of a patient moving through clinical touch points along the cancer care path. It 
also mapped the challenges faced in clinical translation across clinical validity, usability, 
and utility. Chapter 3 established a general understanding of AI methods particularly 
pertaining to image-based tasks in oncology. It also explored how up-and-coming AI 
methods will impact multiple radiograph-based practices within oncology. Finally, 
it discussed the challenges and hurdles facing the clinical implementation of these 
methods. Chapter 4 shifted to discussing AI applications in cancer therapeutics, namely 
radiotherapy. It provided an overview of the potential for AI to transform radiotherapy 
by walking through each step of the workflow. It also highlighted examples where AI 
may increase efficiency, accuracy and quality of radiotherapy, thereby enhancing value-
based cancer care delivery in today’s resource-limited healthcare environment.

PART 2: Prognostic and Therapeutic Deep Learning Applications

Part 2 explored the development and validation of deep learning applications for the 
prognostication and treatment of NSCLC patients. Chapter 5 provided evidence that 
deep learning networks may be used for mortality risk stratification based on standard-
of-care CT images of NSCLC patients. This evidence motivates future research into 
better deciphering the clinical and biological basis of deep learning networks as well as 
validation in prospective data. Chapter 6 investigated the utility of convolutional neural 
networks (CNN) in non-invasively predicting histology in early-stage NSCLC patients, 
using routinely acquired noninvasive radiologic images. The association of CNN-
derived quantitative radiographic image feature maps with histologic phenotype in this 
cohort was also assessed. Chapter 7 demonstrated that deep learning can analyse CT 
imaging scans at multiple time-points to improve clinical cancer outcome prediction, 
namely progression, distant metastases and local-regional recurrence. This highlights the 
impact AI-based non-invasive biomarkers can have in the clinic, given their low cost and 
minimal requirements for human input. Chapter 8 validated DL models for localizing 
and segmenting primary NSCLC tumors and involved lymph nodes in CT images for 
RT targeting. Beyond establishing inter and intraobserver benchmarks, we performed 
multi-tiered validation on external datasets including clinical trial and diagnostic 
radiology data. We also carried out additional dosimetric and metabolic validation, 
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and measured the models’ stability and accuracy. Finally, we conducted human subject 
experiments to measure clinical utility and physician acceptance.

PART 3: AI Methods and Best Practices

Part 3 highlighted best practices in conducting experimental studies, both on the 
data science and computational methodology fronts. Chapter 9 investigated two 
radiomics methodologies for the prediction of response to cancer therapy: handcrafted 
feature-based and deep learning-based. It also underscored the importance of model 
interpretability efforts in understanding the biology of the cancer-normal tissue 
interface, and ultimately targeting localised cancer therapies such as RT and surgery. 
Chapter 10 explored building labels that highlight the key ingredients in a dataset such 
as meta-data as well as unique or anomalous features regarding distributions, missing 
data, and comparisons to other ‘ground truth’ datasets. Such a label may afford data 
specialists a better and more efficient process of data interrogation, which will produce 
higher quality AI models. Chapter 11 underscored the importance of transparency in 
AI research through the sharing of reproducible computational methods as well as data 
whenever possible. Such practices may increase the impact of published AI algorithms 
and accelerate their translation into clinical settings. 

PART 4: Beyond Cancer Imaging

Part 4 and Chapter 12 identified unique challenges in the global health system that may 
be addressed through AI applications, while assisting in reaching the United Nations’ 
Sustainable Development Goals. 
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Societal Impact and Valorizations

This thesis explored deep learning applications in lung cancer imaging. Chapters of 
the thesis involved the study and development of computational image analysis and 
machine learning methods to extract meaningful information from routine imaging 
data beyond that currently captured by trained experts. This section will discuss the 
potential impact of the research on related fields of study as well as society at large.

The global cancer burden is constantly on the rise. This thesis focused on improving the 
utilization of a routine and standard of care data type pertaining to cancer patients i.e. 
medical imaging data. Applications discussed in the thesis focused on lung cancer as the 
leading cause of cancer-related mortalities worldwide - larger than the next five cancer 
types combined. The computational approaches described here, however, are broadly 
applicable to other cancer types that come in the form of solid tumors. For instance, 
another disease candidate for similar studies would be breast cancer. Breast cancer is a 
major disease affecting women worldwide, and similar to lung cancer, relies on imaging 
data for patient management. Finally, it is also worth noting that this thesis may have 
a translational impact beyond oncology. Other diseases that rely on standard of care 
imaging techniques e.g. neurodegenerative and cardiovascular diseases, may greatly 
benefit from some of the methods described herein.

The work presented here broadly falls under precision medicine. This emerging approach 
allows for early diagnosis and customized patient-specific treatments thus delivering the 
appropriate medical care to the right patient at the right time. Extracting insights from 
imaging data represents a single facet of such an approach. Similar methodologies to 
those described in this thesis are actively being applied to other cancer patient data 
types including genomics, pathology, and electronic health records among others. As 
such, this work must be considered within the larger context of a growing body of 
multi-dimensional cancer data, with AI applications deducing patterns and predicting 
outcomes to improve decision-making. Finally, it is noteworthy that such decision-
making applies to both the clinician and the patient alike: the former to advise on the 
best treatment pathway, and the latter to choose their desired quality of life.

Much hype surrounds AI applications and their utility in healthcare and other domains. 
Currently, most scientific literature that studies the clinical impact of these technologies 
tend to be at the proof-of-concept stage i.e. confined to in silico validation in small 
internal data cohorts, and lacking data on real-world clinical utility. Experiments in this 
thesis aimed at moving studies beyond this preliminary stage by validating models in large 
external data cohorts, as well as performing clinical validation through human subject 
experiments wherever possible. As such, this thesis attempts to close the translational 
gap between early in silico validation and larger scale prospective clinical trials. Closing 
this gap may provide the high levels of confidence needed to pursue AI clinical trials 
in medicine, uncover model weaknesses that would have been otherwise overlooked, 
generate preliminary data on human factors given our incomplete understanding of this 
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area, as well as help quantify the time and effort needed to bring AI outputs to clinically 
acceptable levels. 

To translate the research outputs described herein into clinical tools with direct impact 
on patients, further validation must be performed. To this end, maintaining the 
transparency and reproducibility of datasets and methods is crucial. Multiple datasets 
utilized in this thesis come from open-access online repositories, one of which is The 
Cancer Imaging Archive3. This allows for future improvements on the same data together 
with developing performance benchmarks. Virtually all computational methods used 
in this thesis were based on widely available open-source tools, a testament to the 
great value brought along by open-source software. This ranged from computational 
languages e.g. R4 and Python5, to deep learning libraries e.g. Tensorflow6, as well as 
medical imaging software e.g. 3DSlicer7. Additionally, multiple trained AI models as a 
result of work described in chapter 5 have been shared publicly in well-documented and 
reproducible formats8. 

This research was made possible in large part due to an existing scientific infrastructure, 
relative abundance of research funding, as well as a network of experts and collaborators - 
all traits of high-income countries. As a result, most AI developments in healthcare cater 
to the needs of these countries where the majority of research is conducted. Conversely, 
little is discussed about what AI can bring to medical practice in low- and middle-
income countries, where workforce shortages and limited resources constrain the access 
to and quality of care. It is therefore crucial to view the work presented here from 
a global health perspective. Health conditions between these two contexts are rapidly 
converging, as indicated by the recent shift of the global disease burden from infectious 
diseases to chronic noncommunicable diseases including cancer. Some of the methods 
described here may have global oncology applications through allowing non-specialized 
primary care physicians to perform specialized tasks including interpreting imaging 
data. Other methods may provide specialists with expert knowledge across multiple 
subspecialties. This is particularly important in oncology where lack of subspecialists 
may force an oncologist to manage tumors across multiple anatomical sites, and thus 
deliver care of inferior quality owing to the constantly varying scope of services. 

Uneven distribution of the access to technologies has created a digital divide between 
the rich and poor, while contributing to existing global inequities. AI could emerge as a 
socially responsible technology with inherent equity.

3 https://www.cancerimagingarchive.net/
4 https://www.r-project.org/
5 https://www.python.org/
6 https://www.tensorflow.org/
7 https://www.slicer.org/
8 https://github.com/modelhub-ai/deep-prognosis
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Some awards and media coverage include:

• Chapter 3 “Artificial Intelligence in Radiology” was featured on the cover of 
Nature Reviews Cancer journal in August 20189, and was discussed in popular 
media outlets including Wired10 and The New York Times11. 

• Chapter 5 “Deep Learning for Lung Cancer Prognostication: A Retrospective 
Multi-Cohort Radiomics Study” was selected by the International Medical 
Informatics Association (IMIA) as one of the best articles published in 2018 in 
the ‘Cancer Informatics’ subfield12.

• Chapter 7 “Deep Learning Predicts Lung Cancer Treatment Response from Serial 
Medical Imaging” was discussed in an Auntminnie article13.

• Chapter 11 “The Importance of Transparency and Reproducibility in Artificial 
Intelligence Research” was discussed in popular media outlets including MIT 
Technology review14 and Scientific American15.

9 https://www.nature.com/nrc/volumes/18/issues/8
10 https://www.wired.co.uk/article/artificial-intelligence-2019-predictions
11 https://www.nytimes.com/2019/05/22/opinion/health-care-privacy-hipaa.html
12 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697504/
13 https://www.auntminnie.com/index.aspx?sec=log&URL=https%3a%2f%2fwww.auntminnie.com%2findex.

aspx%3fsec%3dsup%26sub%3dcto%26pag%3ddis%26ItemID%3d125244%26wf%3d1
14 https://www.technologyreview.com/2020/11/12/1011944/artificial-intelligence-replication-crisis-science-big-

tech-google-deepmind-facebook-openai/
15 https://www.scientificamerican.com/article/will-artificial-intelligence-ever-live-up-to-its-hype/
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