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Deep learning classification of lung 
cancer histology using CT images
Tafadzwa L. Chaunzwa1,2,3*, Ahmed Hosny1,2, Yiwen Xu1,2, Andrea Shafer4, Nancy Diao4, 
Michael Lanuti5, David C. Christiani4,6, Raymond H. Mak1,2 & Hugo J. W. L. Aerts1,2,7,8*

Tumor histology is an important predictor of therapeutic response and outcomes in lung cancer. Tissue 
sampling for pathologist review is the most reliable method for histology classification, however, 
recent advances in deep learning for medical image analysis allude to the utility of radiologic data 
in further describing disease characteristics and for risk stratification. In this study, we propose a 
radiomics approach to predicting non-small cell lung cancer (NSCLC) tumor histology from non-
invasive standard-of-care computed tomography (CT) data. We trained and validated convolutional 
neural networks (CNNs) on a dataset comprising 311 early-stage NSCLC patients receiving surgical 
treatment at Massachusetts General Hospital (MGH), with a focus on the two most common 
histological types: adenocarcinoma (ADC) and Squamous Cell Carcinoma (SCC). The CNNs were 
able to predict tumor histology with an AUC of 0.71(p = 0.018). We also found that using machine 
learning classifiers such as k-nearest neighbors (kNN) and support vector machine (SVM) on CNN-
derived quantitative radiomics features yielded comparable discriminative performance, with AUC 
of up to 0.71 (p = 0.017). Our best performing CNN functioned as a robust probabilistic classifier in 
heterogeneous test sets, with qualitatively interpretable visual explanations to its predictions. Deep 
learning based radiomics can identify histological phenotypes in lung cancer. It has the potential to 
augment existing approaches and serve as a corrective aid for diagnosticians.

Lung cancer is the leading cause of cancer-related  death1. It is a heterogeneous disease with many clinically 
important  subtypes2. Among these, histologic phenotype is a particularly important predictor of response to 
therapy and overall clinical  outcome1,2. More than 80% of all primary lung cancers are classified as non-small cell 
lung cancer (NSCLC). The major histological types of NSCLC include adenocarcinoma (ADC), and squamous 
cell carcinoma (SCC); deriving from small and large airway epithelia  respectively1,2. In clinical practice, manual 
tissue assessment using conventional light microscopy is a reliable approach for histological  categorization3. 
However, biopsy may fail to capture the complete disease morphological and phenotypic profile due to inter- and 
intra-tumor  heterogeneity4,5. Moreover, of every tissue block sent for diagnosis, only 1 or 2 slides are  assessed6, 
hindering the pathologist’s ability to understand and capture the entire tumor  environment7. Molecular testing of 
lung cancers can help capture distinct oncogenic driver mutation profiles for precision  oncology4,5,8–10, however, 
the integration of diagnostic molecular pathology into the traditional pathology workflow remains challenging 
due to the lack of adequate training and expertise, in addition to prohibitive  costs11,12.

Given the complexity of lung cancer classification and the limitations of current practices, there is a need for 
innovative clinical data assessment tools to augment the biopsy and help better describe disease characteristics. 
The automated interpretation of pathology slides through computer-assisted diagnosis (CADx) has the potential 
to reduce reader variability and is an area of active  research13. However, despite the emergence of CADx-friendly 
ecosystems alongside advances in the digitization of 2-dimensional pathology slides as well as 3-dimensional 
microscopy  imaging13,14, existing approaches fail to take full advantage of the vast amounts of other data avail-
able in modern clinical practice. Histologic classification using routinely acquired radiologic images could have 
significant implications for diagnostic and treatment decisions.
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Radiomics has emerged as a tool for quantifying solid tumor phenotype through the extraction of quantitative 
radiographic  features15. There is a growing body of evidence pointing to the prognostic value of such  features5,16,17 
as well as their utility in stratifying  patients18. While radiomics has primarily relied on the explicit extraction of 
hand-crafted imaging  features17,19, more recent studies have shifted towards deep learning—convolutional neu-
ral networks (CNNs) specifically—where representative features are learned automatically from  data20–26. This 
has fostered the construction of advanced multi-parametric algorithms for cognitive decision-making in many 
clinical  settings14. The combination of such powerful computer vision methods with routine medical imaging 
promises to improve decision-support for the pathologist and oncologist at low  cost16. Hua, et al. implemented 
deep learning frameworks for pulmonary nodule classification with greater than 70% specificity and  sensitivity21. 
A more recent study achieved greater than 99% sensitivity and specificity in lung nodule screening using  CT27. 
Xu, et al. used deep learning models with time series radiographs to predict pathological response in NSCLC 
treated with chemoradiation, achieving AUC of up to 0.7428. Deep learning based radiomics has also shown 
promise in other disease sites. Li, et al. reported AUC of 0.92 predicting mutational status in low grade gliomas, 
an improvement on conventional  approaches23.

In this study, we leverage recent advances in radiomics and deep learning to develop models for enhancing 
clinician accuracy and productivity within the setting of early-stage NSCLC. Building on data collected through 
the comprehensive Boston Lung Cancer Survival (BLCS) cohort, we created deep learning models that can act as 
non-invasive pathological biomarkers for NSCLC. We also found that the CNN-derived CT-radiomics features 
represented distinct biologic and diagnostic patterns in this cohort and were associated with underlying tumor 
microanatomy. This preliminary work demonstrates the potential for deep learning based radiomics to enhance 
the human-based decision tree for NSCLC histology classification.

Materials and methods
Data retrieval and selection. Our model building and validation dataset consisted of a sample of 311 
BLCS patients with early-stage NSCLC receiving care at Massachusetts General Hospital (MGH) between 1999 
and 2011 (Table 1). Most patients underwent primary surgery for their disease. Approval was obtained from the 
Mass General Brigham (MGB) Institutional Review Board (IRB# 1999P004935), and written informed consent 
was obtained on all participants. All methods were carried out in accordance with MGB institutional guidelines 
and regulations. Pre-resection computed tomography (CT) imaging data was obtained for the patient series. In 
addition, overall and progression free survival, cancer staging, and histopathologic data corresponding to these 
patients was documented. All patients had clinical Stage I or Stage II NSCLC. Clinical pathology reports read 
at MGH were used as ground truth. Patients were categorized into three groups; ADC, SCC and an “Other” 
category that comprised all other NSCLC histological subtypes, including large cell and mixed histology, bron-

Table 1.  Patient Characteristics and Follow-up Summary. a  includes all other histology types, specifically, large 
cell and mixed histology, bronchoalveolar carcinoma, carcinoid, and cases with more than one primary tumor.

Characteristic Value (n = 311)

Length of Follow-up, Median, yr 3.9

2-year survival, No. (%) 268 (86.2)

Histology, No. (%)

Adenocarcinoma 155 (49.8)

Squamous Cell Carcinoma 68 (21.9)

Other 88 (28.3)

Stage, No. (%)

I 186 (59.8)

II 125 (40.2)

Figure 1.  Dataset breakdown for model A and model B. Patients were categorized into three groups; ADC, 
SCC, and an “Other” category that comprised all other NSCLC histology subtypes. Similar to data presented in 
Table 2 for model A, model B was fine-tuned using the same BLCS dataset, but with the inclusion of all other 
histology types. This translated to a tuning-set with 120 ADC, 52 SCC, and 56 patients with “Other” histology 
types, and a test-set with 35 ADC, 16 SCC, and 32 patients with “Other” histology types (summarized in Fig. 1).
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choalveolar carcinoma, carcinoid, and cases with more than one primary tumor (Fig. 1). Because oncogenic 
driver mutation status was not routinely collected for early-stage NSCLC at this site (EGFR/KRAS testing has 
only been offered since 2008), a small subset of 18 (5.8%) patients had this information available, and no further 
analysis using molecular data was pursued. 

Data was partitioned randomly to pick test samples that are representative of the dataset, with no statistically 
significant difference in characteristics between model fine-tuning and test sets (Table 2). To ensure generaliz-
ability, we tested our models on a relatively high proportion of inputs, approximating a 75:25 split.

Image preprocessing. Image pre-processing included manual tumor identification, isotropic rescaling, 
and density normalization of input CT data. Localization of the tumor regions was performed using clinician-
located seed-points. Here, a seed-point is placed in the center of the tumor region using the open-source 3D 
Slicer software (version 4.5.0–1, https ://www.slice r.org/), after assessment of transverse sections slice by slice. 
We then extract 3D volumes around the seed-points and from this, 2D input tiles measuring 50 mm × 50 mm 
(Figure S1 in Supplementary Material). Isotropic rescaling was performed on the image data with a linear 
interpolator to minimize distortion, applying scaling factors that allow for a uniform spatial representation of 
1 mm × 1 mm for each isotropic pixel. Density normalization was also performed with mean subtraction and 
linear transformation.

Classification with deep convolutional neural-networks. In this exploratory analysis, CNNs were 
used for feature extraction and image classification. To address the challenge presented by the scarcity of curated 
medical data as well as the heterogeneous CT data normally encountered in routine clinical practice, we used a 
transfer learning approach. Here, robust models that are effective at performing other computer vision tasks are 
fine-tuned to perform visual recognition on our imaging data. The VGG-16 (Visual Geometry Group) neural 
network  architecture29 pre-trained on a large natural image dataset (ImageNet) was assessed. We evaluated the 
network with fine-tuning of the last convolutional, pooling, and fully connected layers. Hyperparameter optimi-
zation was explored iteratively. Inputs of the VGG-16 model were 50 mm x 50 mm image patches. The model had 
three input channels, all of which were fed grayscale images (that is, model inputs are identical stacked images). 
Fine-tuning was performed over 100 epochs with a subset of patients that had either ADC or SCC histology for 
our primary model, model A, and with a mix of all 3 histology types (ADC, SCC, and "Other") for the second-
ary model, model B (Fig. 2). Accordingly, the final prediction (softmax) layer was set to 2 for model A, and 3 for 
model B (Fig. 3). The predictive performance of the models was evaluated with the area under the receiver opera-
tor curve (AUC), and other performance metrics outlined in the model assessment section. 

Table 2.  Tuning and test dataset characteristics. Data presented as n, % of respective data set (tuning or 
test). a Total number of cases with either adenocarcinoma or squamous cell histology, n. b p represents the 
significance of the difference between the two sets. c Sex not recorded in one case respectively.

Characteristic Tuning set Test set p

Histology

All adeno and  SCCa (n = 223) n = 172 (77%) n = 51 (23%)

Adenocarcinoma n = 120 (70%) n = 35 (69%) p = 0.892b

Squamous Cell Carcinoma n = 52 (30%) n = 16 (31%) p = 0.892b

Stage

I (n = 129) n = 102 (59.3%) n = 27 (52.9%) p = 0.417b

A n = 61 (35%) n = 13 (25%)

B n = 41 (23%) n = 14 (27%)

II (n = 94) n = 70 (40.7%) n = 24 (47.1%) p = 0.586b

A n = 21 (12%) n = 10 (20%)

B n = 49 (28%) n = 14 (27%)

Survival

2-yr survival n = 148 (86%) n = 43 (84%) p = 0.722b

Age

Median (yrs) 67.8 68.3

Smoking status

Never-smoker n = 22 (12.8%) n = 9 (17.6%) p = 0.385b

Former-smoker n = 89 (51.7%) n = 27 (52.9%) p = 0.881b

Current-smoker n = 59 (34.3%) n = 13 (25.5%) p = 0.239b

Not recorded n = 2 (0.01%) n = 2 (0.03%) p = 0.917b

Sexc

Female/male n = 97/n = 74 n = 21/n = 30

https://www.slicer.org/
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Feature based analysis and classification. Many studies have shown that CNN-derived feature maps 
may outperform the original CNN in classification tasks when used with machine learning classifiers such as 
support vector machine (SVM) and random forest classifiers (RF)30–32. Unlike hand-crafted radiomics features, 
features from CNNs preserve global spatial information with the convolutional kernel operations on the input 
 image14. This gives them an advantage in fine-grained recognition, domain adaptation, contextual recognition as 
well as texture attribute  recognition14. CNNs are also less dependent on human curation which reduces bias. This 
provides rationale for an exploratory analysis using the “deep-radiomics” features from our models. For this, we 
generated features of the tumor regions as represented by the last pooling and the first fully connected layer of 
model A. These abstract high dimensional features are descriptive of the original image data with a great degree 
of redundancy. The extracted descriptor feature vectors (512-D and 4096-D respectively) were normalized by 
subtracting the mean, and scaling to unit variance. This is essential to optimize classification performance with 

Figure 2.  Experimental design. A convolutional neural network (VGG16) developed by the visual geometry 
group at Oxford (13) and pre-trained on the large ImageNet dataset of more than 14 million hand-annotated 
natural images is employed in this analytical study. Model A is fine-tuned using a sample of 172 patients with 
either adenocarcinoma or squamous cell carcinoma and is used to predict future cases of these histology types 
using a held-out test set of 51 patients with adenocarcinoma or squamous cell carcinoma only. This model is 
also used as a fixed feature extractor for the assessment of machine learning classifiers (kNN, SVM, Linear-
SVM, RF). These quantitative radiographic features are derived from the last pooling and first fully connected 
layers, corresponding to 512-D and 4096-D vectors, respectively. Model A is also used as a probabilistic 
classifier of histology and tested on a held-out test-set of 83 cases containing all histology types, grouped into 
adenocarcinoma, squamous cell carcinoma, or other. Model B is the fully connected VGG16 network tuned with 
a heterogenous sample of 228 cases with all histology types, and has as its output 3 different histology types, 
tested on the 83-patient sample as illustrated.

Figure 3.  Model A and B schematic; This convolutional neural network architecture is based on the VGG 
architecture. With our transfer learning approach, weights of the last convolutional and pooling layers were 
fine-tuned using radiographic data. Model A, tuned on adenocarcinoma and squamous cell carcinoma tuning-
set, had two classes as output in the softmax layer, while Model B which was tuned on a dataset containing all 
histology types had 3 type outputs.
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discriminative machine learning classifiers, such as SVMs. Despite having flexible criteria, these methods may 
perform poorly if individual features deviate significantly from a normal distribution. In our data, individual 
features appeared to follow Gaussian or Gaussian mixture distributions which validates this approach (Figure S2 
in Supplementary Material).

Compared to filtered feature reduction techniques which may eliminate important high order features and 
their relationships, unsupervised feature reduction maintains the interaction among features while eliminating 
redundant features, benefiting the model training process. Algorithms for unsupervised learning include prin-
cipal component analysis (PCA) and auto-encoders, a generalized form of PCA. In our analysis, dimensionality 
reduction was performed using PCA to select independent features corresponding to a set threshold (> 95%) of 
cumulative explained variance. The least absolute shrinkage and selection operator (LASSO) method was then 
used to select features that have the strongest association with the target types (shrinkage parameter, α = 0.01). 
Four machine-learning classification models were independently evaluated on the extracted features: support 
vector machine (SVM) with both linear and non-linear kernels, k-nearest neighbors (kNN), as well as the ran-
dom forest (RF)  classifier33,34.

Model assessment. We assessed the discriminative power of model A in distinguishing the two most com-
mon histology types, ADC vs SCC. Tuning for this and the feature-based models was performed on the subset 
of patients with these histology types, translating to 172 for tuning and 51 for testing. Effects of hyper-parameter 
optimization e.g. batch size were evaluated, as was the depth of fine-tuning.

To assess the predictive performance of our models we used different descriptive indices including the area 
under the receiver operator curves (AUC), accuracy, sensitivity, and specificity. We also computed the Wilcoxon 
rank sum statistic for the binary predicted samples and a two-sided p-value of the test, with the assumption 
that these are samples from continuous distributions. Features or models with an AUC above 0.60 and a p-value 
below 0.05 are generally considered predictive in similar studies 35.

As a surrogate for how clinically meaningful our imaging-based approach may be, we also performed univari-
ate logistic regression analysis 36 for tumor histology using different clinical parameters. Clinical variables that 
have been observed to have an association with lung cancer and tumor phenotype include age, sex, and smoking 
 status8,37–43. Non-binary predictors were standardized by shifting the mean to zero and scaling to unit variance. 
Smoking status was grouped into never-smokers, current-smokers, and former-smokers (quit at least a year 
prior). The logistic regression models were built from the same tuning and testing datasets utilized for model A 
(Table 1). AUC and p-value performance metrics in predicting two histology types (ADC vs SCC) were derived 
in each case for a ready comparison with our deep-learning based model.

A distinct cohort of lung cancer patients treated with surgery (Lung3), which is publicly available at The 
Cancer Imaging Archive (TCIA) was used as an independent validation dataset 44,45. A subset of 49 patients with 
either ADC or SCC histology was used.

Neural network prediction probabilities and histological groups. In addition to noting model A 
performance in distinguishing ADC vs SCC, it may also be important to see how our CNN based biomarker 
performs on a dataset containing other histologies. For this we looked at a heterogeneous held-out test set of 83 
patients containing ADC (n = 35), SCC (n = 16), and “Other” histology types (n = 32). Using model A as a proba-
bilistic classifier 46, the non-parametric Kruskal–Wallis H-test test was performed on the CNN-based prediction 
probabilities to assess the difference between the three independent samples of ADC, SCC, and “Other” on the 
test set. A p-value < 0.05 was considered as statistical significance. We also noted the model performance AUC 
and accuracy for the correct prediction of ADC in this heterogeneous data set (discriminative power).

For comparison, an identical network architecture, model B was fine-tuned using a non-overlapping com-
posite dataset of 228 cases with all histology types (ADC, SCC, Other). This separate model was then tested on 
the same heterogeneous dataset of 83 patients. Given that three types exist for this model, micro-averaging of 
the predicted types was employed to binarize the ROC scores to either ADC vs all other histologies or SCC vs 
all other histologies.

Model interpretability. Activations heat mapping was obtained using Gradient-weighted Class Activation 
Mapping (Grad-CAM)47 with our best performing model, model A. Gradient-weighted class activation mapping 
uses the gradient information flowing into the last convolutional layer of our network to assign importance 
values to each element in the feature map as it relates to respective class  predictions48. The rationale behind 
using the last convolutional layer derives from the fact that deeper layers of a CNN capture higher level visual 
constructs while retaining spatial information that may be lost in fully connected  layers48. A combination of the 
Grad-CAM localizations with the original images provides interpretable visual explanations to model predic-
tions.

Results
Clinical characteristics. Our total patient cohort consisted of 311 patients diagnosed with early-stage 
NSCLC. A total of 186 (59.8%) patients had overall Stage I, and 125 (40.2%) had Stage II disease. Median fol-
low-up from time of diagnosis was 3.5 years, with 86% 2-year survival. 155 (49.8%) patients had pathologist 
determined ADC, 68 (21.9%) of patients had SCC. The remaining 88 (28.3%) patients had all other histological 
subtypes, which included large cell and mixed histology, bronchoalveolar carcinoma, carcinoid, and cases with 
more than one primary tumor. Molecular testing for EGFR/KRAS mutation was done for 18 (5.8%) patients. 
Overall patient characteristics are summarized in Table 1. Model A fine-tuning and test cohort characteristics 
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are summarized in Table 2. For model B this translated to a tuning-set with 120 ADC, 52 SCC, and 56 “Other” 
histology types, and a test-set with 35 ADC, 16 SCC, and 32 “Other” histology types (also summarized in Fig. 1).

Classification with CNNs. The VGG-16 based model A achieved significant predictive performance dif-
ferentiating between ADC and SCC on a held-out test set of 51 patients with AUC of 0.71 (p = 0.018) (Table 3, 
Fig. 4, Figure S3A blue in Supplementary Material). Similar fine-tuning and model evaluation was performed 
with another widely adopted ImageNet architecture, the ResNet50 network  architecture49. There was no signifi-
cant difference in its discriminative output and results from this analysis are included in the supplement.

As a comparison, univariate logistic regression models using clinical parameters yielded AUC of 0.64 
(p = 0.118) with smoking status, AUC of 0.55 (p = 0.544) with age, and sex was the strongest predictor of histology 
in our cohort, with an AUC of 0.69 (p = 0.039). Of note, these findings are consistent with what has been described 
in the literature, with female and non-smoker predominance in lung adenocarcinoma of young  patients8,37,38.

Model A also demonstrated predictive value with the independent validation dataset (Lung3), achieving AUC 
of 0.60 (p = 0.251). This dataset contained a sample of 49 patients, of which 30 (61%) had SCC and 19 (39%) had 
ADC, which is a different skew from the BLCS fine-tuning and test sets. The median age and survival for the 
Lung3 group was 67.9 years and 3.34 years, respectively.

Classification with CNN-derived features. With a threshold of 95% cumulative explained variance, 
PCA was able to perform dimensionality reduction of the 512-D and 4096-D feature space to 60 principal com-
ponents. Feature selection with the LASSO (alpha = 0.01) yielded the 18 best performing features used in model 
building.

All models based on CNN-derived features were able to perform binary classification of tumor histology 
(ADC vs SCC). The 4096-D feature vector seemed to correlate with marginally better predictive performance 
with most machine learning classifiers. The kNN model had the highest performance (AUC = 0.71, p = 0.017). 
This was on par with or better than the CNN (AUC = 0.71, p = 0.018). Other classifiers also showed significant 
predictive power, with an AUC of 0.68 (p = 0.042) for SVC with linear kernel (c = 0.1), AUC of 0.64 (p = 0.107) 
for non-linear SVC classifier. RF had the lowest predictive performance in all instances (AUC = 0.57, p = 0.423), 
although this improved to an AUC of 0.61 (p = 0.197) with the 512-D feature vector. All models had higher 
specificity than sensitivity, while accuracy was again highest with the kNN model (Table 3, Fig. 4).

Neural network prediction probabilities and histological groups. The 83-patient heterogeneous 
test set contained three histologic subgroups, ADC, SCC, and “Other”. Looking at distributions of the predic-
tion probabilities for each of these subgroups, based on our CNN biomarker, statistically significant difference 
was noted for a comparison of all 3 groups (p = 0.015). Post-hoc comparisons between groups showed that 
the difference was most pronounced between the ADC and SCC groups (p-value = 0.003) (Fig. 5). There was a 
trend towards significance (p = 0.235) between the predictions for the SCC and “Other” groups, however there 
was no statistically significant difference between the ADC and “Other” groups (p = 0.355). In keeping with the 
assumption that the test statistic H has a chi-square distribution, our sample sizes were all significantly greater 
than 5. Even in this heterogeneous test set, model A was still able to correctly predict ADC with an AUC of 0.66 
(p = 0.013). The test specificity was 85% and sensitivity was 31% for ADC.

A separate analysis using an identical VGG network architecture, model B fine-tuned with a heterogeneous 
tuning set (n = 228) containing all 3 histologic groups also had some predictive power when tested on the same 
83 patient test set, albeit to a lesser extent. Using the ROC metric to evaluate classifier output quality for the 
3-type model, ROC score when binarizing for SCC vs all other histologies was 0.62 (p = 0.127), and AUC = 0.58 
(p = 0.234) when binarizing ADC vs all other histologies (Fig. 4, Figure S3A orange in Supplementary Material). 

Table 3.  Histology prediction probabilities for neural network classifier vs CNN-derived feature-based 
classifiers. a Area under the ROC curve. ADC histology corresponds to the “positive” class. b k number of 
specified nearest neighbors, an even integer.

Method AUC a Accuracy Specificity Sensitivity p

Fully connected neural network classifier

VGG-16 (Model A) 0.709 68.6% 82.9% 37.5% 0.018

Machine learning classifiers on 512-D feature vectors

kNN (k = 5) b 0.636 68.6% 77.1% 50% 0.123

Linear support vector machine 0.616 70.6% 85.7 37.5% 0.187

Support vector machine 0.630 72.5% 88.6% 37.5% 0.138

Random forest 0.613 72.5% 91.4% 31.3% 0.197

Machine learning classifiers on 4096-D feature vectors

kNN (k = 5) b 0.71 76.5% 85.7% 56.3% 0.017

Linear support vector machine 0.679 74.5% 85.7% 50% 0.042

Support vector machine 0.642 76.5% 97.1% 31.3% 0.107

Random forest 0.571 66.7% 82.9% 31.3% 0.423
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As such, the model trained on ADC and SCC alone outperformed one trained on all histologies in differentiating 
ADC histology from all other histology types (AUC = 0.66 compared to AUC = 0.58).

Model interpretability. We extracted Grad-CAM heatmaps for all layers of model A, and selected repre-
sentative examples (Fig. 6). This provided a spatial representation of areas within the input images that contrib-
ute the most to the model prediction. The first convolutional layers highlighted tumor edges. This is in line with 
what is observed when pre-trained models with similar architectures are applied to natural images, while deeper 
layers tend to pick up more abstract features, and in our experiment highlighted regions on or immediately 
around the tumor.

Discussion
We investigated the utility of CNNs in predicting histology in early-stage NSCLC patients, using routinely 
acquired noninvasive radiologic images. We also assessed the association of CNN-derived quantitative radio-
graphic image feature maps with histologic phenotype in this cohort. The goal of this work was to non-invasively 
predict lung cancer histology and develop robust deep-learning based radiomics models to help differentiate 
clinically important histologic subtypes in NSCLC.

We found that CNNs which are effective at natural image recognition tasks, can be implemented to distinguish 
between the most common histopathologic subtypes in NSCLC. With enough labeled examples, CNNs can 
detect subtle differences in images to predict phenotypes in future  cases14. Using pre-trained models enabled us 
to build on previously learned low-/mid-level features in digital images (e.g., edges, shadows, texture etc.). This 
reduced the likelihood of over-fitting, given the relatively large models, high dimensionality of features, and the 
limited size datasets. It also allowed the models to decode heterogeneous image data more effectively, enabling 
a robustness to variations in routinely acquired clinical data.

Figure 4.  Discriminative performance of deep learning based radiomics models as represented by area under 
the ROC curve (AUC) scores. Model A, tuned with a dataset containing adenocarcinoma (ADC) and squamous 
cell carcinoma (SCC) only, displayed an AUC of 0.71 for the 51 patient ADC vs SCC test set, and Model B which 
was tuned with a dataset containing all histology types had AUC of 0.58 on a heterogenous test set of 83 patients 
(ADC vs SCC vs Other). Also shown are AUC scores for models combining deep learning derived feature maps 
with machine learning classifiers. When used on a 4096-D feature vector represented by the first fully connected 
layer in Model A with dimensionality reduction, the kNN model had an AUC of 0.71, Linear SVM model had 
AUC of 0.68, SVM model had AUC of 0.64, and RF had AUC of 0.57. When used on a 512-D feature vector, the 
kNN model had AUC of 0.64, Linear SVM model had AUC of 0.62, SVM model had AUC of 0.63, and RF had 
AUC of 0.61.
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Our best performing model was able to detect adenocarcinoma with higher specificity than sensitivity, sug-
gesting greater potential in computer assisted diagnosis, and limited value as a screening tool. Furthermore, 
there was deterministic signal using this model to predict histology on an independent and different data set, 
again demonstrating the robustness of the model. The ability to non-invasively predict tumor histology has the 
potential to boost pathologist accuracy and  productivity14,16, providing significant cost and time saving benefits.

Prior studies have demonstrated the utility of CNNs as fixed feature extractors for image analysis and clas-
sification tasks, with many using the outputs from the last convolutional, pooling, or fully connected layers in 
VGG or related  models30–32,50. We followed a similar approach in this work using the image feature representa-
tions from these layers in combination with various machine learning classifiers. Narrowing the dimensionality 
of the deep-radiomics feature space brings performance benefits and avoids over-fitting 51,52. This was realized 
in this study with the kNN estimator which performed on par with the original neural network on the learned 
features, while other classifiers including SVM also showed significant predictive power with both feature sets. 
The findings suggest that dimensionality-reduction of CNN derived feature maps to summarize them with low-
dimensional vectors, may serve as an effective multi-step alternative to fully-connected neural networks. This 
approach is in line with similar methods in the data science  literature30–32,53,54.

Figure 5.  Model A as probabilistic classifier of non-small cell histology in 83 sample held-out test set containing 
all histology types. There is a statistically significant difference in predictions comparing all 3 histology groups: 
ADC, SCC, Other. Comparison of ADC vs SCC revealed a statistically significant difference with p-value of 
0.003, while comparison of SCC vs Other had a p-value of p = 0.235, and ADC vs Other had a p-value of 0.355.
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Both the 512-D and 4096-D feature vectors were successfully reduced to 18 best performing features. This 
suggests the same features were selected from both layers, which speaks to the reproducibility of the features. 
However, machine learning classifiers built around the 4096-D feature vector from the first fully-connected layer 
seemed to correlate with marginally better predictive performance than from the 512-D feature vector. Neurons 
in a fully connected layer have full connections to all activations in the previous layer, whereas convolutional 
layers have connection to only the local features. This could help explain the marginally better performance with 
the fully connected layer (FC1, Fig. 3).

Looking at our CNN based biomarker as a probabilistic classifier of histology, we found that there is strong 
association between model prediction value and the likelihood of certain tumor phenotypes being present. That 

Figure 6.  Gradient based class activation heat maps (Grad-CAM) for deep learning based model A. 
Visualization of image regions with the most discriminative value in type prediction as determined by the 
best performing convolutional neural network model. Here sample test input images are shown with overlaid 
activation contours, where red highlights regions with highest contribution and blue representing areas with the 
least value. The second and last convolutional layer in model A were used for generation of class activation maps 
as depicted by Fig. 3.
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is, higher prediction certainty was associated with correct histology type prediction. For our analysis, because the 
histology group distribution was unbalanced, with more ADC than SCC and “Other”, we favored using a group-
based analysis of prediction probability distributions instead of directly assessing the association of certain types 
with percentiles of prediction probabilities. The ADC and SCC groups were found to have the most significant 
difference. This was expected, given our CNN biomarker was trained on distinguishing these two subtypes. 
No statistically significant difference existed between the ADC and “Other” groups, suggesting a significant 
overlap in radiographic phenotypes in ADCs and the “Other” group. This is in line with the widely reported 
misclassification of histology subtypes in these broad umbrella groups, such as the notable misclassification of 
bronchoalveolar carcinoma (BAC) as adenocarcinoma, undifferentiated  NSCLC55. Recent revised classification 
replaces the term BAC  altogether56. As such, the “Other” group may contain a significant number of misclassified 
 ADCs2. These findings not only demonstrate the validity of our CNN biomarker, but also suggest avenues for 
deep learning-enhanced methods to potentially drive paradigm shifts in histology classification. Adding these 
“Other” histologies to the test set did introduce noise and reduced our model’s discriminative capacity. Including 
“Other” histologies in the tuning cohort further reduces model performance, with the model trained on ADC 
and SCC alone outperforming one trained on all histologies in differentiating ADC histology from all others.

A well-recognized limitation of neural networks is their black-box nature. Looking at intermediate layers 
may help shed light into learned features, and further enhance the performance of our models. CNN interpret-
ability is an area of increased investigation for the potential to not only help us understand how the models 
work, but also gain new insights into clinical data and to identify and predict failures. Here we found through 
gradient-based class activation heat mapping that our best performing model was activating on relevant image 
regions. In addition to the lesion of interest, our model also highlighted areas around the tumor, suggesting sur-
rounding contextual information may have predictive value. These “at-risk” areas likely correspond to anatomic 
regions harboring occult microscopic disease that contributes to local treatment failure with therapies such as 
surgery and radiation. For lesions near the chest wall, the CNN appeared to still focus on the lesion and lung 
parenchyma, while placing less value on other structures including bone and soft tissue, which may otherwise 
have similar CT density to tumor. This suggests an ability to learn complex and representative features. Overall, 
these findings make intuitive sense, and importantly, provide reassurance that the model is detecting the right 
structures within our region of interest (ROI).

Access to the comprehensive BLCS cohort which has extensive clinical and biologic data was a unique strength 
of this study. Furthermore, our approach does not rely on accurate volumetric tumor annotations to work. This 
creates a less time intensive and more efficient workflow, whereas conventional radiomics approaches require 
precise tumor segmentation, and are therefore more prone to human  bias57,58. External validation was attained 
with the independent, “Lung3” surgical cohort. However, some limitations of the present study include small 
sample size. In addition, the interpretability exercise presented here is qualitative, and quantitative metrics may 
better validate future analyses, as would experimental design methods that mitigate bias and noise, such as 
blinding and blocking.

The findings from this exploratory study provide a proof-of-concept that deep-learning based radiomics can 
identify histological phenotypes in lung cancer, and outperforms clinical parameters such as smoking status, 
age, and sex at this task. Similar studies have explored using CT texture analysis for histopathological grading in 
other disease sites including pancreatic ductal  adenocarcinoma59. While such methods are unlikely to replace the 
biopsy, there is potential for application as a decision-support tool or corrective aid for the pathologist. Follow 
up projects will seek prospective validation of our methods using additional large external data sets.

Deep-learning based radiomics has the potential to transform the current rigid classification system into a 
more analytical and flexible model that includes radiological, biological, and clinical  variables15,17,19,59–62. There 
is promise for these methods to augment other emerging techniques, such as liquid biopsy; offering comple-
mentary information to guide clinical decision  making62. However, despite significant advances, challenges for 
effective integration of these novel tools to routine practice remain. Perhaps most important is the unmet need 
for wide-ranging data sharing to build large, curated data sets that can be utilized to construct robust and scalable 
 models63. Future efforts may benefit from streamlined data mining approaches and the elimination of inter- and 
intra-institutional data silos. Alternative solutions include federated or collaborative learning, which may enable 
model training on decentralized  data64. Such distributed machine learning solutions may help establish stronger 
correlations between the deep learning based radiomics signatures and tumor biological data.
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