
M AT E R I A L A N A LY T I C S

Knowledge from Mechanical Behaviour Data

ahmed hosny

Submitted to the Graduate School of Design
for the partial fulfillment of the requirements for the degree of

Master in Design Studies in Technology
at

Harvard University

+
Advisor: Assistant Professor Panagiotis Michalatos

May 2015 – version 2.4



Ahmed Hosny: Material Analytics, Knowledge from Mechanical Behaviour Data , c© May
2015



A B S T R A C T

This research aims to record, quantify and study material behavior within a data ana-
lytics framework. It does so while harnessing the power of the so-called "big data" in
physical environments using both analytical and experimental methods. Current struc-
tural health monitoring systems are one-off applications that are non-scalable and only
act as alert mechanisms. The focus is thus on a material-data interface that is scalable,
developed for mass produced objects and is to be utilized during deployment stages.
Daily sensor-embedded objects are placed online and hence have their deformation data
logged onto the cloud. Data mining is then used to extract useful insights as well as
predict future trends. By selectively reducing the degrees of strain measurement within
objects and coupling that with machine learning, the research showcases relatively good
accuracy in predicting displacements and loads acting on objects. The aggregation of
such data over time allows for new design iteration workflows or data-informed design,
aids in developing user-object interaction models and allows for a better understanding
of challenging load cases that are difficult to model such as fatigue. A foundation for the
Internet of Materials is thus proposed bridging sensor technologies, machine learning and
the Internet of Things.
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1
I N T R O D U C T I O N

The tremendous amount of data produced daily has accelerated our understanding of
human behavior and trends. It has also motivated queries into means of transforming
data into knowledge Figure 1. However, on a data synthesis note, what constitutes data?
Live metrics, customer surveys, qualitative or quantitative? Regardless of the format,
this research explores data from a design perspective. The UX/UI field, being mainly
software driven, has been able to benefit greatly from direct streaming of data to inform
design decisions. It is the other non-software based design fields such as architecture and
industrial design that are slow, and sometimes resistant, to adopting hard data.

Figure 1: DIKW pyramid

As the title "Material Analytics" suggests, the second half of this discussion will revolve
around materials. After all, material matter makes up any non-software based designs.
This research examines the numerical analysis preformed on materials, but beyond com-
puter processors. While FEA examines materials within virtual environments, embedded
sensors can help do just that on a physical level. Therefore the approach of decomposing
the material digital domain into finite elements will be explored on physical prototypes.
A recent interest in large deformations accompanied the emergence of fields such as
soft robotics. This research’s material focus is geared towards non-linear systems as new
novel applications have emerged lately out of controlled non-linearity such as regulated
buckling. Additionally, linear systems have been exhaustively researched. How do we
bring physical objects online? The rise of the Internet of Things has been able to give
hints in answering this question. There has been a great deal of work on developing sen-
sors that capture motion, light, sound as well as environmental factors. Can this extend
to capturing material behavior? The challenge lies in penetrating into a solid, analyzing
its behavior and reporting back without compromising the solid’s function. Therefore
the sensing of material objects can be classified into two categories: one that senses an
outer surface and does not go beyond it - an example of that would be 3d-laser scanning
that converts surfaces into point clouds. Another type comprises penetrating an object
without cutting it open - is what X-ray Computer Tomography scans do. The first cat-
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2 introduction

egory only gives us a superficial understanding of material behavior and the second is
yet to be made human cell-friendly. The one thing both have in common is the complete
dependence on the sensor to perform while the "sensed" objects remain passive. Can we
somehow embed sensory elements within the material itself and program these to do
50% if not 100% of sensing?

Figure 2: A Pressure and Strain Sensor Fabricated on Soft Artificial Skin by Yong-Lae Park et al.

Additive manufacturing through 3d printing comes to mind in trying to answer this
question. As this technology has moved from being solely a rapid prototyping tool to a
fully functional manufacturing option, advances in multi-material printing now provide
means to print electronic components and sensors into objects within one single build
process Figure 2. These electronic components are conductive and through changes in ca-
pacitance, metrics such as mechanical strains are quantified. Piezoresistive components
that exhibit changes in resistance due to applied mechanical forces is also an active area
of research.

In an attempt to define a conceptual scaffold for Material Analytics, a number of re-
lated case studies are explored.

Amiens Cathedral: The intuitive post-completeion monitoring of structures is evident
in the development of the Gothic flying buttress design. This case study is concerned
with the Amiens cathedral, also know as the Cathedral Basilica of Our Lady of Amiens
completed around 1270. It is located 120 km north of Paris. [13] During the construction
of the cathedral, an openwork flying buttress scheme was introduced to replace a more
conventional solid flyer system. The adaptation of the openwork system introduced sev-
eral structural problems. It allowed exclusively large deformations of the upper clerestory
walls. Figure 3

The unforgiving behavior of the mullions linking the upper and lower chords of the
flyer was also problematic as they tend to pull out of their sockets. But more evidently,
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Figure 3: Exaggerated deformation patterns of both LUSAS models. Solid and openwork flyer
system with outward (left-pointing) wind load added [22]

the overly high placement of the lower arc in openwork flyers was the major cause of
cracks some 200 years later. Around 1500, written sources prove that the flyers were
rebuilt. Additional struts Figure 4 were inserted below the rebuilt flyers, demonstrating
that the openwork flyers were indeed placed too high. [22]

As a result of these happenings, the form of the openwork flying buttress was aban-
doned. Amiens was the last major building to employ this specific iteration of flying
buttresses.

Figure 4: Amiens cathedral, choir flyers with additional struts [22]

Hence, it is evident that the trial and error nature of design iterations in this case
(although preformed on the actual finished building), has greatly contributed to a body
of design knowledge dedicated to informing and shaping future iterations. Instances
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of flying buttresses that followed Amiens had sidestepped the structural problems of
the openwork flyer entirely. For instance, the Cologne cathedral employs a lacy rows of
openwork rosettes placed on top of the solid flyers. Figure 5 [22]

Figure 5: Cologne cathedra, choir flyers [22]

It wasn’t until the early 19th century that we developed our understanding of stress-
strain relationships. Strain guages employing mechanical means of magnification appear
to have had their origin in England. In 1802, Dr.Thomas Young of London, England
proposed the ratio of stress to strain below the proportional limit as a property of the
material. Thomas Tredgold, an English experimentalist and a contemporary of Young,
attempted to evaluate Young’s modulus for several materials using stress and strain data
computed from load deflection tests. Certain assumptions on which his computations
were made were attacked, and the experimental work, which these attacks caused Tre-
gold to undertake, led to the beginning of strain gauge development.[1] Figure 6

Figure 6: Various mechanical and optical strain guages [2]
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Contemporary technology has accelerated our understanding of such structural prob-
lems. We are no longer to wait 200 years for rectifying structures thanks to structural
health monitoring.

The restoration work of Duomo di Milano cathedral main spire used such as system
Figure 7. A weight of 90 tons due to scaffoldings was applied to the dome and a com-
plex monitoring system was designed in order to measure the deformation of the church
and its spire. The system employed optical leveling, robotic total stations, accelerometers,
strain gauges, optical plumbs, clinometres, and extensometres. In particular for the anal-
ysis of structural elements at higher risk of collapse, fiber optic sensors were selected,
based on FBG (Fiber Bragg Grating) technology. [3] The authors also considered changes
in thermal conditions and their effect on the structural readings. An alarm system was
set to go once vibrations reach a certain threshold prompting the halting of all restoration
works.

Figure 7: Layout of the geometric levelling network at the base of the dome. Green and red lines
represent the internal and external networks, respectively. The blue point (3000) is hung
on a cable that is connected to the top of the spire. [3]

Other modes of shape deformation have also proven useful in the area of tangible user
interfaces. The FuwaFuwa sensor module Figure 8 is a round, handsize, wireless device
for measuring the shape deformations of soft objects such as cushions and plush toys. It
can be embedded in typical soft objects in the household without complex installation
procedures and without spoiling the softness of the object because it requires no physical
connection. Six LEDs in the module emit IR light in six orthogonal directions, and six
corresponding photosensors measure the reflected light energy. One can easily convert
almost any soft object into a touch-input device that can detect both touch position and
surface displacement by embedding multiple FuwaFuwa sensor modules in the object.
[24]

From these precedents we are able to map out the relationship between material perfor-
mance and data Figure 9. In one end of the spectrum, we find direct practical applications
such as structural health monitoring. These are monitoring applications that function to
provide alerts at times of excess loading eg. too much vibrations on a bridge - stop cars
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Figure 8: Directionality of reflected light is lower at different densities (top) and media controller
(bottom) [24]

from crossing. They are also one-off meaning that they are design for a specific bridge,
building or aircraft. Additionally, they are non-scalable and non transferable across plat-
forms and applications. The other spectrum is research oriented and is very heavy on
data. These are on a molecular level during material discovery and development as in the
case with material informatics. They could also be on a design level through structural
simulation.

Figure 9: Relationship between material and data

The area of interest lies somewhere in between these two extremes: A domain that is
developed for mass-produced objects, scalable across different types of objects and to be
utilized while objects are in use. More importantly, the domain should have some sort
of prediction power.Figure 10 The importance of such power comes from the need to
produce viable solutions. Let’s assume that finite element analysis, with its discritization
approach, yields a relatively high accuracy in simulating material behavior. If we were
to map this dense discritization into degrees of strain measurements in physical objects,
this would not be viable and might even impede the functionality of these objects. But
if we are able to reduce these degrees of strain measurements to the absolute minimum
and couple that with a prediction power, and get good accuracy, then the methodology
is valid.



introduction 7

Figure 10: Prediction power and accuracy

Through data aggregation over time as these objects are in use, we would be able
to extract mechanical knowledge from the data. These ideas have been motivated by
how other software-based fields that have been able to leverage data feedback into the
design process. Web design Figure 11 has had several metrics, such as bounce rate and
conversion rate, developed specifically for the purpose of quantifying the performance
of their web layouts. These metrics are collectively known as KPI’s or key performance
indicators. One example of these web analytics practices is A/B testing. A/B testing
(sometimes called split testing) is comparing two versions of a web page to see which
one performs better. You compare two web pages by showing the two variants to similar
visitors at the same time. The variant that gives a better conversion rate is deemed to
have outperformed the others. [17] These numbers allow designers to move from a "we
think" attitude to a "we know" attitude and eventually enables data-backed decisions.
The question here that poses itself is then how do we utilize these practices into the
physical environments, on an industrial scale to start with?
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Figure 11: Web analytics and A/B testing [17] [18]



2
T H E S I S

Figure 12: Diagram showing proposed thesis bringing data analytics into physical environments
and potential applications.

The thesis for this research can hence be outlined as :

"An opportunity driven research that aims to drive a data analytics framework into physical
environments using both numerical and experimental means." Figure 12

It is through the aggregation of mechanical behaviour data over a period of time that
one can start exploring:

• Human-Object Interaction Models: These models could be used to validate or sim-
ply attempt to gauge the performance of new designs. They could predict human
interaction patterns and tendencies with such designs. A human-object interaction
can be seen as an extension of human-factors and ergonomics ( HF & E ) as well as
human-computer interaction ( HCI ). It differs from both these concepts that it is
object-focused rather than being human-focused. This includes using human input
as variables for design output.

• Understanding Fatigue : Fatigue is the weakening of a material caused by repeat-
edly applied loads. It is the progressive and localized structural damage that oc-
curs when a material is subjected to cyclic loading. [16] It remains one of many
load cases that are extremely challenging to model and predict as they are heavily
reliant on the time factor. Additionally, it is nearly impossible to detect any progres-
sive changes in material behavior during the fatigue process, so failures often occur
without warning.[15] Such aggregated data will go beyond simply providing alerts
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10 thesis

to potential failures. It will accelerate our understanding of fatigue and perhaps
help us build more accurate predictive models.

• Quantified-Self: With the emergence of wearables, smart watches and other de-
vices that track our daily activities, notions of self tracking have quickly gained
wide interest especially with the tremendous amount of data that has been gen-
erated as a result. An indirect method of tracking ourselves could then become
through tracking objects that we deal with. Hence, we are able to understand our-
selves better through how we interact with objects around us.

Figure 13: Diagram showing the manifesto for the Internet of Materials.

The research also aims to build up a framework outlining the Internet of Materials or
IoM. Three actively researched areas could be explored simultaneously and collectively
bundled to build this framework: Figure 13

• Sensor Technologies:From electrical strain gauges to fiber optics sensors, sensor
technologies have been widely developed to cater for a variety of needs. Costs have
dropped significantly to an extent that DIY hackers can purchase relatively sophis-
ticated sensors at reasonable prices. However, these sensors still remain exclusive to
certain applications and objects. The IoM ensures that sensor adaptation expands
to reach a broader range of everyday objects.

• Machine Learning: Whether it be supervised or non-supervised learning, from sup-
port vector machines to neural networks, machine learning is simply based on com-
puters’ ability to learn from data and make predictions. With the emergence of data
scientists as a hit profession in the past five years, machine learning has become
at the heart of almost every new digital application. The IoM will utilize machine
learning to reduce measured quantities while maintaining good prediction scores.
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• Internet of Things: This relatively new term implies connecting object to the in-
ternet through embedded electronics. Now, a sensor embedded into your milk car-
ton will detect that you are running out of milk and will place an order on your
behalf on amazon.com. It is expected that by 2020, there will be 26 million devices
connected to the Internet (Gartner, Inc). The IoM is to be seen as a natural, more
specific extension of the internet of things. However, IoM is more concerned with
analog vs digital signals. Additionally, it is focused on quantifying how objects feel
rather than solely monitoring or controlling them.

As applications built on top of the IoM framework are yet to exist, there are numerous
unknowns and areas to be explored. Figure 14 shows a map of these potential routes,
each representing an entire research project. One can explore the 3d printing of embed-
ded sensors within objects in single builds. Another path would explore UI/UX strategies
in defining how users interact with this new type of mechanical deformation data. One
could also start exploring creating different API’s (application programming interfaces)
for retrieving and mining data pertaining to specific objects. The research path chosen
to be pursued here is the absolute minimum perquisite for all other potential paths men-
tioned above. This path involves three main steps: A.embedding sensors in objects in
the appropriate locations, B.transmitting and storing such data and C.extracting useful
insights from it.
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Figure 14: Overall research map. Focus is on the central spine.



3
I N I T I A L S T U D I E S

With an interest in large deformations, initial studies start to research possible means of
measuring and tracking deformation. Existing tracking methods are vision-based, relying
mainly on either depth or color analysis or both. Through image data, combining depth
sensors with color video cameras allows for capturing 3d motion - similar to Kinect’s
underlying principal. Digital Image Correlation (DIC) is also used where changes in
images are tracked and measured.

Figure 15: Comparisons of captured and synthesized deformations for a heterogeneous non-
linear pillow (left) and trinocular stereo vision system consisting of three high-
resolution cameras (indicated in red) and two to three light sources (indicated in green).
The cameras are arranged in a triangular setup, which helps maximize visibility during
capture of a contact interaction. The light sources ensure uniform illumination during
the acquisition. (right) [5]

An example of computer vision tracking is that developed by Bickel et al. Figure 15 for
the capture and modeling of non-Linear heterogeneous soft tissue. The method captures
deformation examples by combining a marker-based trinocular stereo-vision acquisition
system and force sensors. Deformations are induced by physical interaction with the
object through a probe. These probes have arbitrary shapes and circular disks of differ-
ent diameters. A marker-based system is used to due to its simplicity, robustness, and
independence of the object’s surface properties. [5] While giving very accurate deforma-
tion mapping results, these stereo vision approaches are external to the sensed objects.
They are susceptible to light and shadow, require the addition of markers to surfaces,
and are more appropriate to one-time rather than continuous deformation measurement.
They are also confined to tracking surface behavior rather than an overall registration of
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14 initial studies

sub-surface deformations. This global simplification is beneficial in computer animation
applications where the deformation richness and complexity is retained with a relatively
low computational cost. Hence, video games, virtual surgery and films amongst other
applications rely on such methods. Most importantly, they have limitation when scaling
into 3d and would require additional tracking cameras to capture as many view angles
as possible. There are also other sensor selection criteria, namely Signal I/O. Sensors
need have a suitable interface rate, i.e. allow for measuring quantities at small enough
intervals. They should also allow for one-way wireless communication.

Figure 16: Web application showing resistance reading of a stretched conductive rubber thread
(left) and silicon beam with four embedded sensors along its length (middle and right).

The most important criterion perhaps is the ability to embed the sensors within objects
so that measurements are from within. Electrical strain gauges were explored. These
gauges are usually made out of metal. They exhibit a change in electrical resistance when
being stretched. This resistance change could then be mapped to a strain value. However,
these metal gauges are not flexible enough to measure large deformations. Extensions
beyond an unforgiving threshold will cause the metal sensor to fail. Hence, conductive
rubber threads were explored. Stretching these carbon-impregnated rubber threads will
move carbon compounds away and increase resistance. These threads are coupled with
a microprocessor, a "Spark Core" that is designed as a microprocessor for the cloud.
The quarter coin-sized electronic component sends a voltage through the thread and
measures the outgoing voltage hence measuring the resistance. These values are sent to
the cloud and could be easily retrieved through an HTTP request. This falls within the
REST API protocol. A prototype web application was developed to visualize resistance
readings Figure 16. Additionally, four threads were embedded into a 3d silicon beam.
Figure 17 shows the configuration of said threads within the section of the beam. The
threads are pre-stressed enabling them to measure both tension and compression; An
increase in resistance translates to tension and a decrease translates to compression. They
are arranged in a diamond shape allowing for measuring bending in all four directions.
For instance, an upward bending would cause the blue sensor to loose tension while
the orange sensor would undergo larger tension. The red and green sensors might not
exhibit much of a change then.

The aim of this exercise is to prove that these bending classes would produce unique
sensor reading patterns. Figure 18 illustrates that the readings are infact unique. Given
a new set of readings, one could easily predict the direction of bending without visually
monitoring the beam specimen. At this level of simplicity, the prediction can even be
done without sophisticated machine learning algorithms.
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Figure 17: Beam section showing arrangement of embedded sensors.

15 readings were taken at each bending direction i.e. while the beam is under static
loading. These 15 readings differ even though the beam was static. This is due to noise
and imperfections as a function of the sensors used. Principal component analysis or
PCA was used to further analyze the data. PCA helps reduce a complex data set to a
lower dimension. This helps in revealing the sometimes hidden structures that underlie
the data. Figure 19 shows a plot of the first vs the second principal components of the
data. Each bending class is represented in a different color. Here we see that, even with
noise artifacts, the classes are very well clustered i.e. the colors are nicely packed into
discrete regions. We notice that noise is highly reduced within the unloaded bending
class (in red). This is demonstrated by the 15 red data points falling almost on top of one
other. The leftwards bending class (in purple) shows the most deviation and scattering. If
we were to introduce a new data point and by using a simple machine learning algorithm,
such as K-nearest neighbours or KNN, we would easily be able to identify the class that
this new point belongs to.

However, knowledge of the direction of bending is not enough. Another important
metric to track is the displacement distance. That is, how much the specimen is bending
rather than in which direction it is bending. This lead to the development of a first
iteration of a material training apparatus Figure 20. This apparatus is not to be seen as a
material testing one, it is a non-destructive training tool used to generate sensor training
data for subsequent machine learning. It features a lead screw that positions a probe at
exact z-axis dimensions simulating specific displacements on the specimen. The probe is
thus positioned at some location, readings form all four sensors are noted down then the
probe moves to the next training displacement value. Currently, this lead screw is unable
to move along the x-axis. Further iterations of the apparatus should allow that.

Figure 21 shows a plot of the acquired sensor readings at 2.0 mm intervals from 0.0
mm (unloaded) to 26.0 mm (fully loaded). We notice that readings from sensors L and
R remain almost flat throughout the experiment as expected. This implies that they will
have little significance when it comes to predicting the displacement value. T and B, on
the other hand, show relatively good variation. As long as one single value shows vari-
ation, we can predict the displacement given the sensor readings. A linear regression
model would allow interpolating between these values and hence predicting displace-
ments that were not explicitly part of the training dataset.
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Figure 18: Sensor readings at different bending directions.
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Figure 19: Principal component analysis of bending classes shown in different colors.

Figure 20: First iteration of material training apparatus.
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Figure 21: Sensor readings at different displacement distances recorded from the material trainer.



4
D I G I TA L W O R K F L O W

This chapter outlines both numerical and experimental work flows Figure 22 developed
simultaneously to implement and train sensor-embedded objects. This starts from load
case definition within digital simulation environments to identify most optimum sensor
placement locations. A physical experiment is then set up to generate sensor training
data. This is followed by a machine learning exercise that uses training data to build a
prediction model. Finally, the system architecture is explained illustrating how data is
transmitted, saved and eventually mined to extract useful insights. A 2.5D rubber beam
with side supports will be used to showcase the work flow.

Figure 22: Digital work flow showing different stages.

4.1 sensor deployment

The work flow starts with specifying load cases the specimen is expected to be subjected
to. These are typically theoretical, based on the designer’s intuition or simply based on
the relative position of the specimen within the larger assembly.

This section is thus concerned with identifying specific locations within objects that
would be most adequate for sensor placement. These are locations that would exhibit
a. relatively high stresses and b. relatively large variation in stress values across all pro-
posed load cases. Other considerations might deal with the practicality of placing sen-
sors in locations that would impede the functionality of the object. The later will not be
addressed in this exemplary work flow. Future applications could accommodate such
considerations and allow culling out regions that are not good candidates for sensor
placement due to clashes with functional portions of the object.

Within the structural health monitoring field, economic factors often dictate the num-
ber of sensors used. Generally, the more sensors are placed, the more information could

19



20 digital work flow

be obtained. The number of sensors is however strictly constrained by cost [8]. It therefore
became crucial to answer the following question: What would be the minimum number
of sensors able to give the best description of forces/displacements acting on the object?

4.1.1 FEA simulation routine

Abaqus, a software suite for finite element analysis capable of solving highly non-linear
systems is utilized here due to the hyper-elastic nature of the rubber specimen.

solid modeling The routine starts by the identification of two solid models, the first
being of the specimen itself and a second representing a body, hereafter referred to as a
pin, exerting force onto the specimen. These models are imported into Abaqus i.e. they
are modeled externally ( in meters, .igs format). They will be meshed within Abaqus and
therefore mesh sensitivity issues will be addressed thereafter.

materials A considerable amount of literature has been published on the modeling
of rubber materials. The choice of the model depends to the application, corresponding
variables and the availability of data to determine material parameters.[4] The "Yeoh"
strain energy model has been chosen to describe the hyper-elastic properties of rubber
compounds as it is applicable to a much wider range of deformation. It is able to predict
the stress-strain behavior in different deformation modes from data gained from one
simple deformation mode (eg. uniaxial extension) [7]

The specimen material is thus defined as an isotropic hyper-elastic material based on
the "Yeoh" model. While this currently acts as a theoretical model, future physical testing
could help verify if this specific hyper-elastic model is the most suitable for modeling the
specimen’s material. The material properties are based on the following parameters:

E= 1.0e+ 06 N/m2 ν = 0.499 ρ = 1150 kg/m3 (1)

The model coefficients C10 and D1 are calculated from the initial shear and bulk mod-
ulus as follows:

µ = 2 ∗C10 κ =
2

D1

(2)

where

µ =
E

2 ∗ (1.0+ ν)
κ =

E

3.0 ∗ (1.0− 2.0 ∗ ν)
(3)

The pin material as defined as an isotropic elastic material with the following parame-
ters:

E= 2.0e+ 07 N/m2 ν = 0.3 (4)

sections A solid homogeneous section is applied to both the specimen and pin mod-
els without plane stress or plane strain considerations.

meshing and sets Both the specimen and pin are meshed. The specimen mesh is to
match the superimposed mesh on future physical tests. Exported nodal displacements
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from this simulation can thus be compatible for comparison with experimental counter-
parts. Specimen sets are defined as follows: all nodes, all elements and support faces. Pin
sets are defined as follows: all nodes and all faces.

assembly and interactions Parts are merged and positioned appropriately in an
assembly. Coinciding faces on both the specimen and pin are defined as surfaces. These
surfaces are then used to model a surface-to-surface standard contact interaction model.
The pin surface is assigned as the master surface while the specimen surface is assigned
as a slave. The interaction property is defined with a "Normal" hard-contact behavior
and a penalty "Tangential" behavior with a 0.2 friction coefficient. Surface smoothing is
enabled.

constrains and motion Within this specific problem, the pin travels along the -z
direction and exerts force on the specimen. A reference point is identified and tied to
the pin as a rigid body constraint. Any translations or displacements that are applied to
the reference point will be mirrored to the pin. This will be helpful in quickly setting up
multiple load cases where the location of the pin varies.

analysis settings Non-linear analysis is set up within a static-general step right
after the initial step. The step parameters are defined as follows: Maximum number of
increments: 10000, Increment size: initial: 0.001, min: 1E-006 and max: 1.

boundary conditions Three main boundary conditions are applied:

• Supports: Within the initial step, the support regions on the specimen are encastred
along all possible six degrees of freedom.

• Displacement: Within the static step, a displacement is imposed on the reference
point causing the pin to travel and deform the specimen. It was decided to apply
displacement distances rather than loads. This allows the routine to be duplicated
in the experimental setting as accurately as possible; An exact force value will be
difficult to replicate in the proposed physical setting. A pressure sensor could be
used to record the force exerted on the specimen at each load case.

• DOF along the Y: As this problem is formulated as 2.5D for simplicity, all nodes
within the entire model are given a displacement of 0 along the y-axis i.e. no out of
plane movements are allowed.

4.1.2 Data extraction

Three main data types are extracted from each load case. These are:

• Stress Tensor components: S11,S22,S33,S12,S13 and S23 components are extracted.
These will be used to construct the stress tensor.

• Integration point coordinates: These X,Y,Z coordinates correspond to where
the stress tensor has been calculated. Within this scope and for simplicity, a sin-
gle integration point is used per element (at the center of the element).

• Node coordinates: These are X,Y,Z coordinates of the nodes at the last step of the
non-linear analysis routine. These could potentially be used to compare results
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taken from the physical experiment and hence gauge the accuracy of the numerical
analysis.

4.1.3 Identifying optimum sensor location

By understanding the forces acting on the specimen under these multiple load cases, an
educated guess can be made on where sensors could be deployed effectively. Locations
of interest are those that exhibit large concentrations of stress i.e. where the specimen
experiences large amounts of strains (where stresses are directly proportional to strains).
Another criterion to identify these locations are those where magnitudes of specific stress
tensors within the specimen experience the widest range of variation across all load cases
i.e. they have a large standard deviation. Large variation in values allows load cases to
be easily identifiable and hence will result in relatively accurate machine learning pre-
dictions.

Extracted data across all load cases is then processed simultaneously. A data frame is
constructed, per load case, housing the stress tensors for all elements Figure 23.

Figure 23: Stress tensors per element per load case.

Element-specific tensors are then averaged out across all load cases. This is done by
adding the tensors and dividing them by the number of load cases Figure 24 .

In order to extract the principal stress magnitudes and directions (maximum and mini-
mum), the eigenvalues and eigenvectors of the stress tensor need to be calculated respec-
tively. The eigenvector x of a matrix A is represented by:

A ∗ x = λ ∗ x
where λ is the eigenvalue paired to the eigenvector x. (5)

Eigenvectors can’t be added and therefore the averaging process was preformed on
the tensors themselves as oppose to the eigenvalue/vector pair. Three value/vector pairs
were calculated. Since this exemplary test is formulated as a 2.5D problem, out-of-plane
forces were constrained when setting the boundary conditions. Hence the out-of-plane
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Figure 24: Stress tensors averaged out across load cases.

values of the first and second eigenvectors as well as the entire third eigenvalue/vector
pair are not used Figure 25.

Figure 25: Calculation of eigenvalue/eigenvector pair from the stress tensor. Values shaded in
grey are not used in 2.5D problems.

The following step involves the visualization of the averaged eigenvalue/vector pairs.
The coordinates of the integration points extracted from the FEA routine are used as
origin points per element. Prinicpal stresses are drawn along the eigenvector directions
with a magnitude proportional to the corresponding eigenvalues. Figure 26 shows the
averaged principal stresses extracted from three load cases. As expected, large stress
concentrations exist around supports at either side. Additionally the top and bottom sur-
faces of the 2.5D beam are moderately stressed.

The filtering stage is the terminal and most critical stage in identifying the optimal
sensor placement locations within the specimen. Two filtering techniques were explored.
Principal stresses selected by both techniques were identified as most optimum Figure 27

. These are:
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Figure 26: (a) through (c) represent three different load cases on a 2.5D beam and the correspon-
sing principal stresses. (d) shows the beam in an undeformed state overlayed with
averged principal stresses across all three load cases.

a. Filtering by averaged magnitude (eigenvalue): A threshold is defined whereby the
maximum and minimum principal stress eigenvalues are extracted. Maximum pos-
itive eigenvalues correspond to maximum stretching within the specimen while
maximum negative (or otherwise minimum values) correspond to areas of maxi-
mum compression. The conductive rubber sensors used to measure strain are more
suitable to detecting tension than they are to compression. The ability to measure
compression require pre-stressing the rubber and pre-calibrating the readings as
per the undeformed state. Hence, a larger threshold is set for maximum positive
values (tension) than that set for minimum negative values (compression). Since
the specimen is symmetrical, even numbers are chosen for both thresholds. This
process is repeated twice for both sets of eigenvalue/vector pair. Figure 28 shows
the averaged principal stress vectors together with the filtered maximum and min-
imum eigenvalues.
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Figure 27: Diagram illustrating principal stresses selection criteria.

Figure 28: (a) shows a plot of all averaged eigen1 principal stresses. (b) shows the filtered eigen1

stresses - the maximum 10 values and the minmum 4 values. (c) shows a plot of all av-
eraged eigen2 principal stresses. (d) shows the filtered eigen2 stresses - the maximum
10 values and the minmum 4 values. (e) is an overlay of both eigen1 and eigen2 filtered
stresses.

b. Filtering by standard deviation: The second filter is responsible for comparing the
eigenvalues corresponding to each element across all load cases. Two methods were
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explored Figure 29. The first operates on the stress tensor components and the sec-
ond operates on the eigenvalues themselves . The former ensures that inaccuracies
due to the inevitable switching of eigenvalue/vector pairs are eliminated i.e. the
first eigenvalue in element 1 / case 1 might end up being the second eigenvalue in
element 1 / case 2 and so on. The first method is non-eigen specific and returns the
standard deviation of the sum of in-plane stress components S11, S21, S13 and S23

across all load cases. Therefore the result can be interpreted element-wise rather
than vector-wise. i.e. elements that have principal stresses displayed in Figure 30

are those with highest standard deviation averaged in all directions. Thus their
geometry undergoes the most deformation across all load cases. Figure 31 shows
the result from the second method. Notice the accumulation of principal stresses
towards the supports as expected.

Figure 29: Diagram showing the two methods used to evaluate the standard devitaion. The first
operates on the stress tensor components and the second operates on the eigen values.

Figure 30: Diagram showing 10 elements with the highest standard deviations based on a scalar
calculated from the stress tensor components

Ideally, some sort of clustering method would be employed to group the principal
stresses and hence identify X number of "ideal" locations for sensor placement. This cal-
culation would then take into consideration both highest averages and highest standard
deviations. Additionally, areas could be identified as no-go-zones where sensors would
impede the functionality of the object. Sensor type and size could also be set as a param-
eter in deciding on most appropriate locations.
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Figure 31: Diagram showing 10 principal stresses with the highest standard deviations based on
eigen1 (a) and eigen2 (b)

4.2 physical training

The second stage of the digital workflow outlines the experimental portion of the re-
search. This section is concerned with generating sensor data that will be used to train
a machine learning algorithm. The numerical methods carried out in the previous sec-
tion are thus replicated in an experimental setting, but with the addition of the sensor
readings variable.

4.2.1 Preparation of physical specimen

The sensor deployment exercise has given a good indication of the most appropriate
areas for sensor deployment. These were concentrated around the supports as well as
in the mid-lower and mid-upper sections of the beam. Now, a physical prototype of the
beam can be built incorporating these embedded sensors. An ABS plastic mold has been
printed for casting the rubber beam Figure 32. The mold introduces positives as cavities
for embedding sensors into the beam. Metal clips are used to constrain the sensors at
their ends. Additional positives are then introduced into the mold to allow installing
the clips. Initial tests showed that the clips successfully constrained the sensors and
prevented creep. However, the bulk of removed material around the sensors (spaces used
to install the clips) has disengaged the sensor for the larger material bulk of the beam.
That is, displacements applied to the beam had almost no effect on the overall length of
the sensors.

In lieu of embedding the sensors within the beam, they were instead applied on the
surface Figure 33. Metal wire cross through the beam from one side to another and is
used to constrain the sensors. The wires are then attached to an electronic breadboard
with a mounted "Spark Core" microprocessor. While this approach has been successful i.e.
sensor lengths corresponded to the beam deformation, the approach is not scalable into
3d cases. Active research is undergoing in strategically embedding sensors in everyday
objects while A. maintaining the functionality of said objects and B. ensuring reliable and
accurate deformation measurement. These methods employ high precision tooling and
processes to ensure these conditions are met. The aim of this surface-mounted sensor
prototype is to demonstrate that syncing sensor and body is viable. Future research in
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Figure 32: 3d printed mold (top) and rubber beam specimen with embedded sensors (bottom).

appropriate fabrication techniques would allow embedding the sensors and capturing
body rather than surface deformations.

Figure 33: Local coordinate system and locations of displacements (top) and rubber beam speci-
men with surface-mounted sensors (bottom).

A beam-specific local coordinate system was also defined Figure 33 with the top left
corner of the beam as origin. This system is based on the loadcases previously defined
in the numerical FEA portion of the research. Mechanical displacements by the training
apparatus described hereafter will utilize said coordinate system.

4.2.2 Material trainer apparatus

The second generation of the material training apparatus Figure 34 is built upon the
first iteration described in Chapter 3. Two stepper motors ensure accurate positioning
of both X and Y- axes. An Arduino microprocessor controls the number of coil turns
within each motor and subsequently the location of the pin (in blue). Stepper motors
hold their position as long as they are wired making them ideal for such application.



4.2 physical training 29

A chassis made of acrylic sheets and threaded rods ensure the setup is stable during
training. Adjustable supports allow for training beams of different lengths.

Figure 34: Second generation material training apparatus.

Improvements in this apparatus include:

• Adjustable X-axis: Displacements can now be applied at different locations across
the length of the beam in addition to varying the Y-axis height.

• Pressure sensors: Since displacements are applied, a pressure sensor is used to
quantify loads. This sensor is essentially a force sensitive resistor with its resistance
varying with the amount of pressure applied to the sensing area.

• Control/monitoring dashboards: The apparatus is coupled with two dashboards
Figure 35. The first is a machine control dashboard connected to the apparatus-
mounted Arduino. It is based on Guino, a dashboard system developed for Ar-
duino. Here, desired X and Y locations of the pin are set. The pressure value P
is then recorded. The second is a sensor monitoring dashboard connected to the
beam-mounted Spark Core. It is a web based dashboard that utilizes client-side
JavaScript to access sensor readings as well as the enoch Javascript library to vi-
sualize real-time graphs. Here, all 5 sensor readings are monitored. They are then
written onto a comma-separated file (CSV) for storage and further processing.
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Figure 35: Material training dashboards. Machine control (left) and sensor monitoring (right).

4.2.3 Computer vision

While specific loading conditions are being applied and sensor readings taken, it is cru-
cial to record the corresponding displacement fields as these will act as training data in
the machine learning framework. Two methods have been explored:

• Template Matching:

The python OpenCV library was utilized to find a specified template within an
image of the specimen, whether loaded or unloaded. There are two primary inputs
to the algorithm A. the source image in which to expect to find a template and B.
the template itself. The template image is compared against the source by sliding
it one pixel at a time, left to right and up to down. At each location, a metric is cal-
culated relative to the strength of the match. Results are stored in a 2d matrix. The
maximum values in this matrix thus represent high correlation and the template
coordinates in the source image [14].

The template here is seen as a nodal marker - placed at nodes where displacement
measurement is desired. A star shaped geometry is used and passed on to the algo-
rithm as the template. The same geometry is then superimposed at six location on
the specimen. While the template matching algorithm is able to successfully iden-
tify the feature locations within images acquired during testing Figure 36 , there
are several drawbacks to this method:
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Figure 36: Templates detected succesfully within images aquired during testing.

* The template size in pixels must match the feature size within the image. Addi-
tionally, if the feature has been rotated, it will most likely go undetected. This is
likely to happen due to the large deformation nature of the specimen. The method
is therefore unable to detect the feature if is has been scaled, rotated, skewed or
been subjected to non-affine transformation.

* The feature count on the specimen represents a mesh where displacements are
to be measured. By increasing the mesh resolution, more features will need to be
appended to the specimen and eventually detected. This adds complexity and is
computationally expensive.

Figure 37: Star template used (left) and noise generated during template detection within images
(right).

* The algorithm is more well-suited where a single occurrence of the template is
to be detected such as finding Waldo in a "Where’s Waldo" puzzle. For finding
multiple occurrences, one needs to set a threshold and search the result matrix
space for these values. Additionally, multiple peaks are detected per occurrence.
Figure 36 extraction routine used the max 80 values in the result matrix to detect 6
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occurrences. Noise is attributed to this discrepancy Figure 37. Even with clustering
the top matches into 6 coordinate pairs, it is difficult to ensure these will be in the
same order when the algorithm is run on another image. Hence, it will be not be
feasible to compare unloaded and loaded images.

• Digital Image Correlation:

Digital Image Correlation (DIC) is a computer based image analysis technique uti-
lizing random patterns. Due to recent advances in computers, digital cameras and
image processing software, DIC has been extensively used in the measurement of
mechanical displacements and deformations.[23] Patterns used in DIC have been
widely researched as well. Stoilov et al. have developed image generation algo-
rithms to improve the accuracy of DIC. As is the case with template tracking, two
major drawbacks araised when exploring the utilization of DIC:

* DIC is more suited for 2d problems where patterns can be expressed on flat sur-
faces. With light and shadow artifacts affecting accuracy, DIC is not scalable to 3d
problems.

* The accuracy of DIC is relative to the number of frames taken during the deforma-
tion i.e. the number of images from when the load is first applied to full application.
More frames enhance the correlation and allows the DIC algorithm to better track
the random patterns across the frames. This then requires more data acquisition ef-
forts during the experiment. Additionally, with the sensors mounted on the surface
of the beam Figure 33, printing speckle patterns on the surface is not viable.

Figure 38: Computer generated random patterns used for image analysis with subset. [23]

It was hence decided not to utilize these computer vision-based techniques. A more
robust method would be to generate a displacement lookup table from the previously
generated finite element analysis. Such table would include the displacement field per
load case. The table is explained in detail in Section 4.4. With the increase in 3d print-
ing resolution, a potential avenue of research would be to print objects with embedded
patterns in one build - in lieu of simple surface application. The distribution of acquisi-
tion cameras to track pattern embedded objects is an interesting alternate approach to
utilizing strain sensors.
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4.2.4 Data exploration

Prior to using the experimental training data to generate the prediction model, exploratory
data analysis is preformed revealing some useful insights. The first of these exercises in-
volves plotting all 5 sensor values across all trained load cases. Each polygon in Figure 39

illustrates a single load case. There are two main observations here. In both 1 and 2 cm
deformations, the graph is not symmetrical around the "s3" dotted line. It is expected
that the sensor readings be more or less symmetrical as the sensors themselves are. As
the sensors have been cut and installed manually, it happened that "s5" is longer that
"s1" causing its readings to be generally lower. The second observation deals with the
fact that the sensor readings for most loadcases are generally lower than those for the
unloaded model (show in red). This implies that all sensors have undergone tension
causing their resistance to increase and the voltage readings to drop. From the numerical
analysis model, the sensor expected behavior is as follows: "s1","s3" and "s5" are in ten-
sion while "s2" and "s4" are in compression. The data hence shows us that "s2" and "s4"
have undergone tension rather than compression. This is perhaps due to their orientation
being relatively horizontal or their length being relatively long.

Figure 39: Sensor readings at 1 and 2 cm displacements.

The second exercise explores noise levels in the data and how that would effect the
accuracy of prediction models built using this dataset. Two loadcase pairs are isolated
and compared Figure 40. The red halo around the first load case represents the noise
threshold of that particular loadcase. If all 5 readings of another loadcase (in blue) fall
within the noise threshold of the other, the model accuracy is weak as the two loadcases
can’t be differentiated. If, on the other hand, at least one of the 5 readings falls outside
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that threshold level, a good prediction accuracy is expected. The more readings that fall
beyond the threshold, the greater the accuracy. Hence, the signal/noise ratio will highly
affect the accuracy. This can be addressed by using sensors with a low signal/noise ratio.
Additionally, multiple sensors placement configurations could be explored and tested as
a means to maximize the differences between readings for individual loadcases.

Figure 40: Noise and prediction accuracy.

Figure 41: Pressure sensor readings.

The final exercise plots the measured pressure along the entire length of the beam. As
expected, it is harder to move material towards the supports and thus pressure readings
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are generally higher in these areas. Even when applying a displacement of 1cm, the
mid-span region of the beam experiences no pressure. This is due to the fact that the
unloaded beam had a preexisting sag. Thus the displacement of the pin did not cause
any corresponding displacements in the beam.

4.3 machine learning

As scientific fields are best described by the questions they attempt to answer, the field
of Machine Learning seeks to answer : ’How can we build computer systems that au-
tomatically improve with experience, and what are the fundamental laws that govern
all learning processes?’ [21] A survey of machine learning algorithms was conducted
to identify the most appropriate for the purpose of this research. There are generally
two types of machine learning algorithms: Supervised algorithms where input data with
know results is used for training and unsupervised learning where the training data has
no known results i.e. it is not labeled. The experimental data generated from the pre-
vious exercise is labeled and hence a supervised learning algorithm is to be explored.
In selecting the appropriate algorithm,the supervised space is broken down into three
components: Representation: A classifier must be represented in some formal language
that the computer can handle. Evaluation: An evaluation function (also called objective
function or scoring function) is needed to distinguish good classifiers from bad ones.
Optimization: A method to search among the classifiers for the highest-scoring one. [6].
The key is to select the appropriate combination of methods from Figure 42.

Figure 42: Common examples of the three machine learning components [6]

The scope of this section will focus on the representational component. Linear regres-
sion was selected as the most widely used of statistical techniques and one of the most
traditional modes of machine learning. It is also fairly simple to interpret as oppose to
other ’black box’ algorithms such as neural networks. Additionally, it is used to predict
continuous variables as oppose to classes as is the case with K-nearest neighbor algo-
rithms. Linear regression models simply describe the relationship between a dependent
variable (Y) and independent variable or variables (X) which are also know as the predic-
tors. In our case, the dependent variables (Y) are the load case parameters: namely the
x and y coordinates of applied displacement as well as the applied pressure p. The in-
dependent variables (X) are the five sensor readings i.e. predictors. Since we are dealing
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with multiple dependent and independent variables, the process is identified as multi-
variate linear regression.

The dataset is randomly split into two halves, one for training and the other for testing.
The model is fit with the training half and is supplied with the independent variables
(predictos) from the testing half. A score is then given to the model on how close the
predicted values are from the actual ones. Figure 43 shows the actual values on the
horizontal axis and the predicted values on the vertical for each of the three predicted
quantities. Here we notice that the model has a high accuracy in predicting x an p. This is
illustrated by the high correlation values between actual and predicted values. The model
has preformed poorly in predicting y. This is mainly due to the small data sampling
as y readings only consist of three integers 0,1, and 2. Overall, the model has a good
prediction score of 0.79.

Figure 43: Results from a multivariate linear regression model.

The second attempt at creating a regression model involved calculating the natural
logarithm of both the dependent and independent variables and using these to fit the
model. It is generally accepted to fit regression models with the log value as oppose to
actual values. This reduces the effects of outliers, helps linearize the model and eventu-
ally should produce a better fit and a well behaved model. It does so by altering the scale
and making a skewed variable more normally distributed. Figure 44 shows results from
the log-based model. The logarithm approach appears to have a negative effect on the
accuracy and prediction power. This is, again, due to the interger variables comprising
the value of Y. The log value of 0 is undefined and the log of 1 is zero. The completely
skews the data rather than linearize it. By association, since multivariate linear regression
takes into account correlation between the multiple dependent variables, the prediction
accuracy of both x and p has also been affected negatively. It was thus decided to use the
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actual values rather than their natural logarithm as this approach is not valid with this
particular dataset.

Figure 44: Results from a multivariate linear regression model using the logarithm of both depen-
dent and independent variables.

As a first step to optimizing the model prediction accuracy, further models were cre-
ated. Figure 45 shows the results obtained from five regression models built with each
single sensor reading as a single predictor. This allows us to visualize the prediction
power of all 5 sensor readings relative to the predicted values of x, y and p. We notice
here that models that were fit using "s4" and "s5" show good accuracy in predicting x.
On the other hand, models fit using "s1" and "s2" show good accuracy in predicting p.
Models fit using "s3" shows slight accuracy in predicting y. These are most likely caused
by sensitivities in the physical specimen having been assembled manually. In a more con-
trolled experimental environment, this variation in accuracy across predictors is crucial
in future optimization efforts. Instead of using one model fit with all five sensor readings,
multiple models could be used and fit with a different combination of sensor readings
to give the absolute best prediction accuracy. This could be accomplished by a brute-
force search where models are fit with every possible combination of predictors allowing
an exhaustive systematic search of prediction space. It was decided to utilize the single
model fit using all five predictors Figure 43 while identifying potential evaluation and
optimization possibilities.

Given the complexity of the prediction process, it is crucial to demonstrate the work
flow through an example Figure 46. One of the data points within the training set
recorded the loadcase x=14cm, y=1cm and p=30mV together with its corresponding five
sensor readings 3550,3488,3105,3415 and 3344mV. When the same set of sensor readings
are passed on to the model, the model predicts the loadcase x=14.5cm, y=0.8cm and
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Figure 45: Results from five models created with each single sensor readings as a single predictor.

p=47.4mV. these are essential values at the regression line i.e. the best fit line. The pre-
dicted values are relatively close to the actual values using the same predictors.

Figure 46: Example illustrating the regression model accuracy.

Now that a loadcase has been predicted, we move on to predicting the displacement
field i.e. the deformation pattern of the beam under this specific loadcase. For this pur-
pose, a displacement lookup table is utilized Figure 47. This table is not based on ex-
perimental but numerical analysis data. This represents an instance of combining both
numerical and experimental methods. As the predicted displacement coordinates x and
y are unlikely to exist as is in the lookup table, we need to search for X closest matches in
the table. When found, weights are applied to the matches based on their proximity to the
predictions. Linear interpolation is then used where the matches’ displacement fields are
multiplied by their corresponding weights and added up to give a predicted displace-
ment field. It is important to highlight that the numerical data is based on non-linear
analysis. Preforming linear interpolation on the data is thus questionable. Due to lack
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of alternative options, this concern will not be addressed. This concludes the machine
learning section which, given training data, is able to predict displacement coordinates,
pressure and field.

Figure 47: Predicting displacement field from lookup table

4.4 system architecture & data mining

Now that a methodology for material analytics has been defined, this section will attempt
to construct a framework where this methodology can be applied. Figure 48 illustrates a
simplified version of such framework. It is organized around a central cloud-based pre-
diction application. Cloud computing is defined by the NIST as a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)[11]
Economies of scale are thus achieved through the sharing of resources, very similar to an
electricity grid where you only pay for what you use. The cloud thus allows the system
to be fully scalable as the number of connected objects grows or shrinks. Additionally, it
provides a one stop access point to the prediction algorithm i.e. the prediction does not
happen on the clients but on a server. This allows further work on improving prediction
accuracy to happen on the cloud, and on the cloud only. It also enables the framework to
connect to different types of clients making it cross-platform. Therefore, regardless of the
object’s embedded electronics, its ability to push sensor readings to the cloud is the only
prerequisite. Each of these communication strings are explained in detail in this section.

4.4.1 Sensor-embedded objects

In addition to sensors, these deployed objects are also loaded with wifi enabled micro-
processors that allow pushing sensor data to the cloud at regular intervals (currently set
at 500ms). That is, these electronics are in themselves cloud-based; Connecting objects to
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Figure 48: Diagram illustrating the system architecture.

such electronics automatically deploys the objects online. The cloud can then be accessed
through an HTTP address, similar to accessing a web page. Appendix item 6 represents
a JavaScript object notation (JSON) that is returned whenever the address is called. JSON
is an open standard format that uses human-readable text to transmit data objects con-
sisting of attribute-value pairs. It is used primarily to transmit data between a server
and web application [19]. While this JSON might contain many microprocessor-specific
attributes, that main interest lies in three attributes and their corresponding values: devi-
ceID which returns a unique object identifier, lastHeard which returns a time stamp at
which the sensor readings were taken and result which returns the five sensor readings
as a list.

4.4.2 Cloud prediction & database

The Material Analytics cloud is preloaded with object-specific prediction models. It is
assumed that objects are trained and their training data is loaded onto the cloud prior
to the objects being deployed in real-life interaction environments. As objects differ in
material and geometry, their individual training data is unique. Two identical chairs
would use the same prediction model but a chair and a stool would use different mod-
els. Hence, the deviceID is crucial as it identifies which model is to be used. After the
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appropriate model is selected, the sensor readings are supplied as predictors and a pre-
diction is made. Appendix item 9 represents the JSON returned when a call is made
to the prediction cloud. The predicted attribute contain nested attributes within includ-
ing: predictedX and predictedY representing the predicted x and y coordinates of the
displacement pin and predictedP representing the predicted pressure value at the dis-
placement location. These predictions are a result of the multivariate linear regression
model outlined in Section 4.3. Other attributes including the predictedXDisp and pre-
dictedYDisp represent a vector of nodal displacements in the beam mesh across the x
and y axes respectively. These are generated through the displacement lookup table il-
lustrated in Figure 47. Due to the processing time needed to preform predictions, a new
JSON is generated every 5 seconds. That is, new sensor readings are logged in every
500ms and a new loadcase prediction is made every 5 seconds. Further development is
to be made on improving the prediction speed and attempting to match its resolution to
that of the raw sensor readings data.

Eventually, this JSON constitutes an entry into the database, which is also cloud-based.
The database utilized here is the NoSQL database MongoDB. A NoSQL database allows
storage and retrieval of data that is modeled in means other than tabular relations used,
for instance, in MS excel worksheets. This framework allows for a simpler schema and
horizontal scaling. [20] Essentially, the database can be seen as a large empty canvas on
top of which these JSON elements sit in no particular order. It is through their attributes
that these JSON elements could be aggregated and insights from the data explored. Sec-
tion 4.4.4 outlines the data mining process in detail.

4.4.3 Realtime visualization

Figure 49: Real-time visualization of beam deformations on a web browser.

Direct connection to the cloud-based prediction algorithm also allows for real-time
visualization of deformations. A node js environment is set with a server side application
responsible for communication with the cloud. The Javascript library ThreeJS is utilized
to display a digital model of the beam on a web browser. Once a prediction is made,
the x and y coordinates of all nodes comprising the mesh are passed onto ThreeJS. The
mesh is then updated to reflect the latest predicted deformation shape. It is crucial the
node numbering sequence of incoming predictions (these oroginally match the Abaqus
FEA mesh) match that of the ThreeJS mesh. Both loadcase predictions and mesh updates
are in sync occurring every 5 seconds. The web interface also displays the the deviceID,
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time stamp as well as sensor readings. As users would eventually be more interested
in analytics regarding their use of daily objects, real-time visualization is expected to be
complementary to that effort. The main goal behind developing this interface is to prove
the accuracy of the prediction model. Around 70% of predictions were correct with some
lag due to processing time needed to make the predictions. The remaining 30% were
incorrect. It is also important to note that fact that the beam/sensors being symmetric
introduced sensitivities into the prediction model. Thus incorrect predictions tend to be
on the other side of the symmetry line relative to the actual applied displacements.

Figure 50: Readings from 3 sensors at rest across a period of 7 days.

As more time passed after training and visualizing, a decrease in prediction accuracy
was noted. This then lead to a series of experiments aiming to identify whether the
sensor readings, over time, differed from those recorded at the time of training. The first
experiment eliminated the rubber beam and tested three sensors of different lengths. The
sensors were pre-stressed and mounted onto a jig. Their readings were recorded every
few hours over a period of seven days. Figure 51 shows the experiment setup and a plot
of the data collected during this period. Each color denotes a sensor with the red being
of the longest sensor and the green being of the shortest. We notice that there is a slight
increase in sensor readings over time. By the 5th day, the readings start to plateau and
maintain a relatively constant value. This behavior is attributed to some micro tension
being lost. As this tension is lost, carbon molecules become more closely packed without
any change in the overall length of the sensor. This increases the conductivity and hence
causes an increase in the readings. Therefore, any training on the beam should take place
at least 5 days after installation.

The second experiment was conducted on the sensor-embedded beam itself. With the
beam being at rest i.e. completely unloaded, readings were taken over a similar period of
7 days. Figure 51 illustrates the experiment setup and the five colors used in denoting the
different sensors. The results show a steep decrease of values over time. This decrease
is acceptable if the sensors maintain their relative differences. In other words, such hy-
pothetical decrease would not affect the accuracy of the prediction model as the linear
relation would simply be shifted down along the regression line. However, the actual
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Figure 51: Readings from 5 embedded sensors at rest across a period of 7 days.

data shows the readings crossing one another meaning that in fact they do not maintain
their relative readings. This renders the prediction model completely obsolete as retrain-
ing would be required before relatively accurate data is gathered. The plot shows relative
data consistency and stability during the first few hours of day one right after training.
This period has then been identified as suitable for data gathering.

4.4.4 Data mining & design recommendations

Figure 52: 1500 predicted displacement coordinates (top) and cleaned version eliminating predic-
tions outisde beam boundary (bottom).

With results from previous experiments in mind, data gathering was preformed by
manually applying displacements by hand onto the beam for a period of two hours right
after training. This generated around 1500 database entries at a time spacing of 5 seconds.
These entries were downloaded from the cloud-based database in JSON format for offline
mining exercises. Figure 52 shows a plot of the gathered data. Each red marker represents
the x and y coordinates of a predicted pin location. More manual displacements were
deliberately applied towards the right side of the beam to showcase variation in the data.
The accumulation of predicted points towards the right reflects this. Another observation
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is the predictions that fall beyond the boundary of the beam, to the top and to the right.
It seems that the prediction algorithm had a tendency to "over-predict" values along both
the x and y axes. Hence, the first operation preformed on the data is a simple cleanup
eliminating all predictions beyond the beam boundary. Around 300 entries were deleted.

Figure 53: Object in use at red markers and object at rest at blue markers.

Due to inaccuracies and noise in the predictions, we can assume that those prediction
close to the contact surface could be regarded as non-contact loadcases i.e. the beam was
unloaded and at rest at these moments. A threshold of 5mm below the contact surface
was defined as illustrated in figure Figure 53. Predictions in blue markers fall within
that threshold and those in red fall beyond it. This thus allows us to develop a usage
rate metric. This value amounted to a 78% usage rate for this specific dataset, that is the
beam has been interacted with 78% of the total data gathering time period. We often buy
items that we end up not using. This is either due to the fact that we did not need these
items initially or they did not function as intended. This usage rate metric could thus
provide us indirect user feedback. The amount of time users interact with objects could
potentially translate into a metric gauging their success. For users, this metric could then
be translated into a dollar value. Users could then understand how the value of objects
depreciates the more they use/interact with it. The dollar value could also help them on,
for instance, deciding when to sell or replace an item when its value per unit time has
dropped below a certain amount.

Figure 54: Lengthening by interaction density.

Figure 54 (right) illustrates a color map of predicted displacements across one side of
the beam. Perhaps the first observation is the lack of predictions towards the left end of
the beam where a dark blue area dominates the map. The most intuitive recommendation
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is thus to shorten the beam from the side that did not experience any interaction. This
could be seen as an optimization opportunity where material is discarded when not in
need. However, this recommendation will rely heavily on what this beam actually is and
its role in a larger assembly. Does it make sense to shorten it? A second layer of data
interpretation becomes crucial in translating these recommendations into viable design
iterations.

Figure 55: Design for durability (harden by frequency of contact).

The following data mining operations involve projecting all the predicted interactions
up towards the contact surface. We can then plot a histogram of frequencies Figure 55

along the entire length of the beam. This helps us visualize how the number of interac-
tions vary as a function of beam length. The histogram plot is smoothed using a But-
terworth filter that captures outlier frequencies in the dataset. Subsequently, a safety
threshold could be set, above which frequencies are expected to cause damage to the ma-
terial. Another design recommendation here would be to use a more durable material as
surface treatments at these "high risk" areas. One could also plot pressure as a function of
beam length as in Figure 56. It could be assumed that the more pressure is experienced
to move material, the less comfortable the process is. It could therefore be suggested that
softer material be introduced along the contact surface, the thickness of which is directly
proportional to accumulated pressure. To map out the pressure values, a best-fit curve is
drawn through the data points (shown in red). This curve is then mirrored around the
horizontal axis. Material above this curve is to be softer or more pleasant to touch than
material below the curve. It may be argued that some fixed thickness of this soft material
could be applied along the entire interaction surface without the need for data. However,
this strategy allows a better and more optimized distribution of this potentially costly
material. Additionally, it produces an aesthetic that emerges out of a purely data-centric
design approach.

As the machine learning algorithm also outputs a predicted displacement field, the
VonMises stresses can be calculated. This involves numerical computing where the Jaco-
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Figure 56: Design for comfort (soften by amplitude of contact).

Figure 57: VonMises stress distribution from single loadcase (top) and average VonMises stress
distribution from composite loadcases (bottom).

bian matrix and its inverse are calculated. This is used to compute the B matrix. Strains
and stresses are then calculated as follows:
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ε = Be ∗ de

where d is the displacement vector

(6)

σ = D ∗ ε
where D is selected for plane stress problems

(7)

The scalar quantity VonMisies stress is hence calculated from the stress tensor com-
ponents. Figure 57 (top) illustrates the VonMises stress distribution on one of the 1500

predicted loadcases. These results could then be averaged out across all loadcases result-
ing in a composite loadcase giving an overview of stresses across the entire data gather-
ing period Figure 57 (bottom). Instead of being generated form hypothetical numerically
simulated data, these results are based on real-life conditions. Hence, the attractiveness
of the method is highly evident in such averaged results. With this information in hand,
multiple design recommendations could then be made. A thicken by stress approach
could be suggested Figure 58. The constant thickness of the beam could be varied as
a function of stresses. As the VonMises stress calculations are element-based, they are
remapped onto the mesh nodes. The nodes are then displaced relative to their corre-
sponding stress values; A higher stress value causes a larger nodal displacement and
thus a locally thicker beam. Other approaches could include perforation by stress where
parametrically-sized holes are introduced in areas of low stress concentration as a means
to optimize material distribution and mass. Another bi-material approach would involve
aggregating the averaged stress results into two groups based on some cut-off threshold.
These two groups could be translated into two different materials of varying moduli so
as to address the required material strength locally.

Figure 58: Thickening by Stress.
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4.4.5 Fatigue prediction

Fatigue is the weakening of a material caused by repeatedly applied loads that are be-
low the yield point. It is the progressive and localized structural damage that occurs
when a material is subjected to cyclic loading. [16]. Parameters affecting fatigue are also
inherently linked to the type of material subjected to these loads. It thus becomes cru-
cial to define fatigue in terms of rubber-like materials, rubber being the material used
to cast the subject specimen. The four major categories of factors contributing to fatigue
in rubber are: the effects of mechanical loading history, environmental effects, effects of
rubber formulation, and effects due to dissipative aspects of the constitutive response
of rubber.[10] This research is solely concerned with mechanical loading history. Addi-
tional inputs, such as temperature and humidity, could be added as predictors enabling
the study of how these correlate to fatigue and hence crack growth.

The quantification of fatigue needs to happen on the element level rather than on a
loadcase by loadcase basis. For that, it was important to pivot the data allowing us to
access stress quantities at the element level. Figure 59 illustrates a plot of stress across the
data gathering period on a single element. Due to the high noise levels in the data, the
readings were smoothed using the Butterworth filter allowing a better reading of loading
cycles. With 80 elements in the beam mesh, 80 stress/time plots were generated.

Figure 59: A plot of VonMises stress values across time for a single element.

Further analysis on these plots is material specific. What induces fatigue in one mate-
rial might not have the same effect in another material. Under mechanical loading history,
Mars et al. outlined three factors contributing to fatigue in rubber and these are hence
extracted from the plots Figure 60 :

• Mean Load: This represents the average stresses acting on the element and are ex-
tracted by calculating the area under the stress/time curve.
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• Loading Frequency: This represents the number of loading cycles and are calcu-
lated through either the number of peaks or valleys in the data. The effect of load-
ing frequency depends on polymer type. For rubbers that exhibit strain crystalliza-
tion, frequency does not have much effect on fatigue life. For amorphous rubbers,
frequency has a larger effect [10].

• Statically Strained Rest Period: This represents the time at which the beam
was under static loading as a percentage of total time i.e. time at which applied pin
displacements remained static. These are extracted from flat portions of the curve
with a slope less than a specified threshold.

Figure 60: Fatigue prediction parameters of a single element.

By preforming the above analysis on all elements, the distribution of each of these pa-
rameters can be visualized across the entire beam Figure 61. The plots representing area
under curve and plateau periods are somewhat the reciprocal of one another. Mapping
out the number of cycles per element reveals an interesting and unpredictable pattern.
These three parameters could then be aggregated to produce a hypothetical fatigue pre-
diction metric. In doing so, different weights are applied to each of these metrics relative
to their contribution to fatigue development. As a showcase, mean loading was given a
weight of 0.65, loading frequency a weight of 0.25 and strained rest periods a weight of
0.10. The fine tuning and adjustment of these weights is crucial to improving the accu-
racy of the fatigue prediction metric. One potential method to achieve that is to allow for
a feedback mechanism whereby out-of-commission beams are collected and examined.
Real fatigue features could then be compared to predicted fatigue both in terms of lo-
cation as well as severity. This closed loop would then allow re-calibrating the weights
based on real observation data. The result of this weighted operation Figure 61 (right) is
a prediction map of elements with high susceptibility to fatigue in dark red and others
with a low susceptibility in dark blue. Reinforcement, for instance, could then be pro-
posed at amounts proportional to the susceptibility rate; More reinforcement at elements
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with high risk of fatigue and so on. It is important to note that this prediction map is not
comprehensive. It does not take into account environmental and chemical factors that
might have a greater effect on fatigue life than mechanical loading. It is only with the
addition of extra sensors such as temperature and humidity sensors that the effect of
these other parameters could be taken into account.

Figure 61: Fatigue prediction parameters across entire beam (left) and combination of weighted
parameters (right).



5
D I S C U S S I O N

5.1 identifying application scenarios

Figure 62: Hypothetical family of sensor-embedded ducks and potential suggested designs.

If we were to imagine a hypothetical family of sensor-embedded ducks Figure 62.
These ducks have been deployed into real world scenarios i.e. they are products that
consumers have bought and used. The data recording thus started at the time of pur-
chase. Let’s assume that we now have deformation data from each member of the family
across a number of years. We would then be able to access every model independently
and define how success translates into data. What portions of the data represent ideal
interaction modes? Which design data conveys minimum pressure readings and hence
maximum comfort? Which predicts the least fatigue probabilities? Which has been in-
teracted with and used the most? By identifying successful portions of each model, we
can mix and match to mix and match eventually putting together a new generation of
rubber ducks of superior performance. But this process is also reversible. We can pro-
pose a new radical disruptive rubber duck and, based on abstractions of geometry and
material from existing data, we would be able to predict how this new design would
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preform. This is one approach to creating a user-object interaction model. By allowing
designers to provide design proposals as input, this model is then able to simulate in-
teractions with the design based on historical data. Ultimately, the model would also
autonomously generate design recommendations based on parameters set by users.

Potential applications for this methodology could be divided by results; whether they
are immediate or require aggregation over a longer period of time:

• Immediate applications:

Quantified self applications: The emergence of wearables aims to quantify ev-
ery single aspect of our lives from heart rate to number of steps taken Figure 63.
This requires the development of specialized sensors for each metric. A potential
application would introduce the monitoring of material mechanical behavior to
wearable technologies. A rubber band with sensitive strain sensors worn around
the wrist could potentially replace an electronic heart rate sensor. Smart seats could
detect unhealthy postures and alert user to correct it.

Figure 63: Early prototype of "Quantimetric Self-Sensing" apparatus, 1996 (body sensing appa-
ratus with Digital Eye Glass for realtime display of ECG, EEG, EVG, and other body
sensing apparatus output [9]

Smart user-aware objects: A material-specific Internet of Things framework that,
based on interaction patterns or habits, would be able to identify users. For instance,
sensor-embedded beds would learn the sleeping habits of users and would then
refer back to it when attempting to identify the current user.

• Applications requiring aggregation over time:

User-object interaction models: Developments in the human-computer interac-
tion and human factors and ergonomics are both human-centric. They map human
interaction modes to computer software/hardward or to physical objects respec-
tively. However they do not address human interaction in terms of object’s mechan-
ical behavior as ergonomics mainly focuses on how user’s feel as oppose to how
object’s feel.
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Physics-based deformation models A video game aiming to animate a real-world
effects such as buckling could potentially utilize such a model. These deformations
models can also be used in computer graphics and animation and augmented real-
ity applications. The opens up the possibility of creating deformation models that
help simulate the behavior of materials rather than relying on analysis systems
based on approximation. simulations can now be more accurate relying on real
data rather than based on approximations of elasticity moduli and other preset
FEA parameters.

Real-time fatigue monitoring quantifying fatigue levels through accumulated
stress. The aim is to propose an accelerated approach to understanding material
failure. While traditional workflows rely on forensic evidence in assessing how
and where materials fail - through physical cracking , real time monitoring of ma-
terial behavior offers an immediate insight into potential failure scenarios. Other
metrics could include humidity levels in materials, water content, temperature and
exposure to light for light-sensitive materials.

Spatial Studies Analyzing objects to understand space. While translating from
micro to macro, local behaviors are studied and global patterns are thus extracted
i.e. aggregation of local behaviors to understand space use.

Within the health monitoring arena, a specific use case is identified for material ana-
lytics. This acts as an exemplary case study for problems which the internet of materials
framework can potentially provide solutions for.

Prequisites:

• A medical device, prosthesis or orthopedic device that patients interact with physi-
cally on a regular basis. This could be anything from beds, wheelchairs, splints for
broken wrists to shoes or pillows used to treat specific disorders.

• A device where monitoring its mechanical behavior (deformations and strains) is
beneficial to understanding its functionality.

• Data collected (and aggregated over a period of time) from monitoring this device
is potentially useful for the medical practitioner, patient and device manufacturer
alike.

• A device that experiences large deformations i.e. is made of rubber or some kind
of material able to undergo large elastic deformations

Requirements:

• An existing design, preferably in any digital 3d format.

• A set of load cases based on initial guesses on how the patient will interact with
the device.
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Usage scenario:

A prosthesis embedded with strain sensors. Readings are logged at equal time in-
tervals on the cloud and the equivalent deformation field is predicted and stored in a
database. The medical practitioner can monitor the data and push notifications to the
patient if the prosthesis is not being utilized appropriately. If abnormal data is discov-
ered, this could trigger an emergency alert. The patient herself/himself can use the data
in addition to continuously updated advice/pointers by the medical practitioner to as-
sess their personal progress. This follows along with personalized health-care efforts and
could also tie in the popular notion of "quantified self". The manufacturers of the prosthe-
sis can get an accelerated understanding of fatigue - a load case that can’t be predicted
and hence modeled. They can then use the data to design improvements or even recall
the prosthesis if its functionality exceeds a specific safety factor.

5.2 data-driven design vs . design intuition

The three major contributions of this research maybe be summarized as follows: A. A
method for identifying the most optimum sensor placement locations given a designed
artifact and expected loadcases B. A material analytics framework that is scalable, cou-
pled with prediction power and plugs in to multiple sensor technologies and C. A new
mode of design iteration that is data-informed. The heavy reliance on big data recently
accompanied by the emergence of data science as a profession both triggered concerns to-
wards the interpretation of data. How far should reliance on data go and does it restrict
creativity? This is more of a design-biased concern. Other concerns, one might argue,
pose a greater threat; Will data slowly erode science? It was back in 2008 that Wired
magazine’s editor-in-chief Chris Anderson predicted the end of theory and science in an
article titled "The End of Theory: The Data Deluge Makes the Scientific Method Obsolete"
Figure 64.

Figure 64: Wired magazine cover, issue 16.07 [12].
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Anderson argued that "our ability to capture, warehouse, and understand massive
amounts of data is changing science, medicine, business, and technology" . And in fact it
did. The scientific approach includes creating a hypothesis, testing it and thus validating
or disproving it. With massive amounts of data, this approach is obsolete. The access to
data replaces the need to prove a hypothesis. Instead of carrying out experiments, big
data treats the entire world as one large experiment ground. And back to the design
realm, can massive amounts of data combined with applied mathematics change the
way we design? The fact is the day have, as demonstrated by software-based design
fields such as web design and UI/UX. It was through this research that an attempt to
replicate such data analytics practices into physical environments.

Data-backed design starts to raise crucial issues, one of which is the dichotomy be-
tween data and instinct. This has also been described as the tension between the science
of design and the art of design. While instinct should be backed by reason, the tempta-
tion to refer to "scientific" data that is hard to avoid. The is, and will continue to exist,
a burden of proof in design. Gut feelings and intuition are an accumulation of what is
perceived to be an existing behavior or pattern, and thus it might be argued that data
and instinct might not be too far apart. the Google+ button is a good case study to ad-
dressing this tension. While all style sheets have been already created, the team realized
from research that red buttons received many clicks. The color red, however, was not
consistent with the design palette across the project. This led to a compromise where red
was used at main locations only.

It is thus important to separate data-informed from data-driven. While data might help
drive solution towards a local optimum, finding the global optimum is not as straight
forward. The data scope might not be far enough as to capture this global optimum.
Since it is very difficult to quantify data reach and depth, interpretation of data at hand
is crucial in making this distinction between data- "backed" and "informed". Data is
often bias and some metrics are qualitative making them impossible to quantify and
collect. It is also important to note that design is not an optimization problem, and thus
data needs several layers of abstraction before it could be seamlessly integrated into the
design thinking processes.

The data is eventually giving use mere recommendations. Its up to the authors how to
interpret such data, leverage data feedback in the design process and potentially use it
to validate design intuition.
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Follows is the code work flow for the whole process:

1. 3d models for both the specimen and pin used to create the displacement in .igs
format.

2. Abaqus python routines a.generate the load cases, b.visualize the deformations and
c. extract node, element and stress information.

3. Python routine to read stress/element information. Here optimum sensor locations
are set.

4. Python routine to read node information and create look up tables for predicting
the displacement field.

5. Arduino microprocessor code used to drive the material training apparatus.

6. Spark microprocessor code used to record sensor readings and push them to the
cloud. A ( URL link) could be queried at any time producing a JSON object as
follows:

1 {

"cmd": "VarReturn",

"name": "myVol",

"result": "344916237674180",

"coreInfo": {

6 "last_app": "",

"last_heard": "2015-03-31T11:26:58.463Z",

"connected": true,

"last_handshake_at": "2015-03-31T10:53:03.958Z",

"deviceID": "53ff72066667574852400967"

11 }

}

7. Web interface code for visualizing sensor readings developed in javascript. It is also
used to pack the training data into .csv files to be used by the machine learning
framework.

8. Python machine learning code that utilizes a linear regression model to predict
coordinates of applied displacements and loads.

9. The python web application places the machine learning code on line. It receives the
sensor JSON object from the spark microprocessor and, based on the object logging
its data, will chose the corresponding regression model to use. Hence all files used
to create the models are also placed alongside the application. A prediction is made
in the form of another JSON object:
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https://api.spark.io/v1/devices/53ff72066667574852400967/myVol?access_token=013582db19c4d4d54056c28a36a36a2a8225a376
https://floating-falls-8712.herokuapp.com
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{

"objectID": "53ff72066667574852400967",

3 "sensorReadings": [3550, 3489, 3104, 3417, 3345],

"time": "2015-03-31T11:44:50.247Z",

"predicted": {

"predictedX": 14.58,

"predictedY": 0.87,

8 "predictedP": 38.96,

"predictedXdisp": [-0.0, -0.0, 0.00965, 0.00965, 0.01918 ...],

"predictedYdisp": [-0.0, -0.0, -0.00064, -0.00064, -0.00103 ...]

}

}

10. Prior to visualizing the object within a web application, two steps are taken: a. the
model is converted from .obj to .js allowing it to be read by THREE.js, a webGL
javascript library. The orientation of the .obj should match that of the .igs used
initially as input to Abaqus. b. Matching the vertex numbers of both the original
simulation model and the newly created .js. This is done using a python code and
an ordered list is then copied into the Node.js web application explained hereafter.

11. The Node.js web application is responsible for saving the JSON object under item
9 onto a MongoDB database. It is also responsible for pinging the python web
application every 5 seconds to receive new displacement predictions. These are then
passed onto the THREE.js library updating the nodes of a digital mesh representing
the beam.

https://calm-taiga-4331.herokuapp.com
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