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Cancer

Figure 1. Number of deaths due to heart disease and cancer: United States, 1950-2014

800,000

Heart disease
700,000 i~

600,000 [

500,000 - Cancer

400,000 -

Number of deaths

300,000 [

200,000

100,000

(s le ey by aa s b s by ans s e araaaaleagl

0
1950 1960 1970 1980 1990 2000 201020|14
Year

Centers for Disease Control and Prevention

Changes in the Leading Cause of Death: Recent Patterns in Heart Disease and Cancer Mortality
https://www.cdc.gov/nchs/data/databriefs/db254.pdf



Lung Cancer Staging

Classifications
Primary Tumor (T) Classification Distant Metastasis (M) Classification
TX Primary tumor cannot be assessed, or tumor M0 No distant metastasis ANATOMIC STAGE/PROGNOSTIC GROUPS
proven by the presence of malignant cells M1 Distant metastasis Oceult Carcinoma No Mo
i i i ’ Stage 0 N0 Mo
n spu.tum or_h ronc_hlal il L M1a Separate tumor nodule(s) in a contralateral a2
visualized by imaging or bronchoscopy ! Stage IA N0 Mo
) y lobe, tumor with pleural nodules or N i
T0' No evidence of primary tumor malignant pleural (or pericardial) effusion Sage o B
Tis Carcinomain situ Mib  Distant metastasis (in extrathoracic organs) Stage IIA N Mo
11 Tumor 3 cm or less in greatest dimension, N Mo
surrounded by lung or visceral pleura, N Mo
without bronchoscopic evidence of invasion i Mo
more proximal than the lobar bronchus Stage IIB N Mo
T1a Tumor 2 cm o less in greatest dimension No Mo
Stage lIA
T1b Tumor more than 2 cm but 3 cm 3 :: - ﬂg
or less in greatest dimension 1
T2 Tumor more than 3 cm but 7 cm or less or N Mo
tumor with any of the following features (T2 M Mo
tumors with these features are classified T2a N2 Mo
if 5 cm or less): involves main bronchus, 2 cm N Mo
or more distal to the carina; invades visceral M Mo
pleura (PL1 or PL2); associated with atelectasis Stage IR N Mo
or obstructive pneumonitis that extends to the N3 Mo
hilar region but does not involve the entire lung N3 Mo
T2a Tumor more than 3 am but 5 cm I
i i i N3 Mo
orless in greatest dimension Ta 1 'TI e
T2b Tumor more than 5 cm but 7 cm ! ! o
or less in greatest dimension ‘ ; ! Stage IV ayN Wi
T3 Tumor more than 7 cm or one that directly i AnyN  Mib
invades any of the following: parietal R §
pleural (PL3), chest wall (including superior L &

sulcus tumors), diaphragm, phrenic nerve,
mediastinal pleura, parietal pericardium; or
tumor in the main bronchus less than 2 cm
distal to the carina' but without involvement T1a
of the carina; or associated atelectasis or

obstructive pneumonitis of the entire lung or

separate tumor nodule(s) in the same lobe

T4 Tumor of any size that invades any of the
following: mediastinum, heart, great vessels,
trachea, recurrent laryngeal nerve, esophagus,
vertebral body, carina, separate tumor
nodule(s) in a different ipsilateral lobe

¢ UL

https://cancerstaging.org/references-tools/quickreferences/Pages/default.aspx



Intra-tumor Heterogeneity

Subclone 1

Intertumour heterogeneity _ Intratumour heterogeneity

Intercellular genetic

and non-genetic heterogeneity

Clonal heterogeneity

Rebecca A Burrell, Nicholas McGranahan, Jiri Bartek, and Charles Swanton

The Causes and Consequences of Genetic Heterogeneity in Cancer Evolution
Nature - 2013



Artificial Intelligence Methods in Medical Imaging

a Predefined engineered features + traditional machine learning

Feature engineering
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Abmed Hosny , Chintan Parmar, John Quackenbush , Lawrence H Schwartz and Hugo JWIL Aerts

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018



Artificial Intelligence Methods in Medical Imaging

a Predefined engineered features + traditional machine learning

Feature engineering
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Increasingly higher-level features

—— Convolution layers for feature map extraction
—— Pooling layers for feature aggregation
—— Fully connected layers for classification

Abmed Hosny , Chintan Parmar, John Quackenbush , Lawrence H Schwartz and Hugo JWIL Aerts

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018



Analytical Setup
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Architecture

fixed weights during transfer learning |
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Prognostic Signal

RADIOTHERAPY SURGERY
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Benchmarking

auc
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Input Stability
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Test-Retest Stability

Binsheng Zhao, Leonard P, James, Chaya S. Moskowiiz, Pingzhen Guo, Michelle S. Ginsberg, Robert A. Lefkowitz, Yilin Qin, Gregory J. Riely, Mark G. Kris & Lawrence H. Schwariz

Evaluating Variability in Tumor Measurements from Same-day Repeat CT Scans of Patients with Non—Small Cell Lung Cancer
Radiology - 2009



Evaluating the Prognostic Value of Tumor-Surrounding Tissue

ROC-AUC

AUC=0.63 AUC=0.66 AUC=0.70
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Activation Mapping

INPUT IMAGE WITH ANNOTATIONS ACTIVATION HEATMAPS
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Thank you!
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