
Radiation therapy is a crucial pillar of cancer 
treatment and is indicated for ~50% of 
patients1. Estimates indicate, however, that 
millions of patients currently lack access 
to this vital treatment modality2–6 owing to 
barriers such as a scarcity of infrastructure, 
technology and human resources (including 
treatment facilities, machines and 
planning systems as well as trained staff)7. 
Furthermore, radiation therapy has become 
increasingly complex over the past few 
decades owing to technological advances, 
resulting in a near- complete reliance on 
human–machine interactions including  
both software and hardware.

Despite technological advances, much 
of the radiation therapy workflow still 
requires time- consuming, manual input by 
a diverse team of health- care professionals, 
including radiation oncologists, medical 
physicists, medical dosimetrists and 
radiation therapists. The growing complexity 
of these human–machine interactions in 
conjunction with the increasing incidence 
of cancer has led to radiation oncology 
workforce shortages throughout the world 
and increasing variability in the quality of 

examples of how AI might increase the 
efficiency, accuracy and quality of radiation 
therapy, thus enhancing value- based cancer 
care delivery in today’s resource- limited 
health- care environment. The possible 
applications of AI in radiation oncology 
are wide ranging and we have not covered 
them all in this article. Instead, we aim to 
provide an overview of the transformative 
potential of AI in radiation therapy and our 
perspective on the future of the radiation 
oncology workforce.

Artificial intelligence methods
Early AI platforms were predicated on 
rule- based reasoning performed by a 
computer system according to a set of 
steps and procedures defined by human 
experts11,12. However, the generalizability 
of these methods on variation of the input 
data and task scope is often limited by the 
lack of ‘intelligent’ components capable 
of processing ‘edge cases’ not explicitly 
described in the knowledge base13. These 
rule- based AI systems have achieved varying 
degrees of clinical utility14. Over the past 
decade, however, a fundamental shift has 
occurred in the algorithms powering the 
automation of image- based tasks. This shift 
has been marked by the revival of neural 
networks, a class of machine learning 
algorithms loosely based on our presumed 
understanding of how the human brain 
functions.

Research on neural networks has evolved 
from the mathematical development in the 
1960s of the backpropagation algorithm, 
which is the main method of training neural 
networks and involves using the known 
output for each input value to fine tune the 
weights of a neural network, towards simple 
networks in the 1980s15–17. The increasingly 
large amounts of data available, along with 
increases in computational power and 
advances in algorithm development, have 
all revived interest in this field of research, 
leading to the development of ‘deeper’ neural 
networks with multiple intermediate hidden 
layers between the input and output layers 
(that is, the data fed into the network and the 
results generated, respectively). The function 
of hidden layers is to perform non- linear 
transformations of the input data to extract 
feature information in order to inform the 
output layer. The use of such algorithms has 

care8. Notably, variations in the radiotherapy 
treatment- planning process have been 
shown to negatively affect overall survival, 
even in clinical trials (a setting in which 
extra care is given to standardizing 
approaches)9,10. Furthermore, the radiation 
therapy knowledge and experience 
gap between adequately resourced and 
under- resourced health- care systems is 
one of the greatest global inequalities in 
cancer care and poses an enormous public 
health challenge.

Artificial intelligence (AI) involves 
the development and use of complex 
computer algorithms to perform tasks that 
normally require human intelligence, such 
as visual perception, pattern recognition, 
decision- making and problem solving, at a 
similar or improved level of performance. 
AI is transforming many fields of medicine 
and has the potential to address many of the 
challenges faced in radiation therapy and 
thereby improve the availability and quality 
of cancer care worldwide. Herein, we discuss 
the promise of AI to transform the field of 
radiation oncology by outlining each step 
of the clinical workflow and highlighting 
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obviated the need to predefine reasoning 
rules because the map of ‘hidden neurons’ 
between input and output nodes can be 
learnt automatically from the training 
data. This approach provides deep learning 
algorithms with a greater learning capacity 
than that of preceding AI algorithms and 
consequently an ability to discern very 
complex, non- linear relationships in 
data. Deep learning can therefore begin 
to approximate or even surpass human 
capabilities for highly complex tasks  
and has been applied in several medical 
scenarios18.

The radiation therapy workflow 
involves a multitude of complex tasks, 
including tumour and organ segmentation, 
dose optimization, outcome prediction 
and quality assurance (QA), which have 
seen varying degrees of digitization and 
consequent automation over the years. This 
heterogeneity is also reflected in the types 
of data used, ranging from radiographic 
images and radiation dose maps to hardware 
calibration log files and maintenance 
records. The multimodal nature of 
deep learning architectures19 enables 
aggregation of these different data streams, 

cross- modality learning and algorithm 
generalizability, which might ultimately 
result in improved clinical decision- making 
and thus better quality care for all patients20. 
Indeed, various AI algorithms have been 
applied to each task of the radiation therapy 
workflow (Table 1).

Application in radiation oncology
The radiation therapy workflow can be 
divided into several steps including initial 
treatment decision- making, treatment 
planning and preparation, QA, delivery of 
radiation therapy and follow- up care (Fig. 1). 

Table 1 | a non- exhaustive list of the modern ai methods and their applications in radiation oncology

ai method Description Selected applications in radiation 
oncology

Selected examples

XGBoost A prediction modelling technique 
consisting of an ensemble of weaker 
prediction models, usually decision 
trees

Outcome prediction using structured 
data, such as tabular data on 
comorbidities, dosimetric indices, age, 
and so on, as well as radiomic features 
extracted from radiographic images148

Prediction of radiation- related fibrosis 
of neck muscles based on MRI data from 
patients with nasopharyngeal carcinoma149

Artefact suppression in images; for 
example, in the context of motion 
management

Prediction of tumour motion ranges 
using 4D CT images in patients receiving 
radiotherapy for lung cancer150

Neural networks Algorithms — loosely modelled on 
the neural networks of the human 
brain — comprising different layers, 
which are in turn composed of nodes 
that are activated based on input

Radiation dose quality assurance (QA) Pretreatment dose verification in patients 
receiving radiotherapy for prostate cancer 
or nasopharyngeal carcinoma151

Convolutional 
neural networks 
(CNN)

Neural networks that are composed  
of convolutional layers (for perception), 
followed by fully connected layers  
(for cognition)

Outcome prediction from unstructured 
data; for example, derived from 
radiographic images

Prediction of rectal toxicities of 
radiotherapy for cervical cancer152

Patient- specific QA measurements QA of dose distribution in patients receiving 
radiotherapy for prostate cancer153

Fully 
convolutional 
neural networks 
(FCN)

Neural networks that are composed 
entirely of convolutional layers; images 
are encoded then decoded, thus 
producing a probability map per voxel 
indicating the probability of a specific 
prediction

Image segmentation using 
unstructured imaging data

Organ- at- risk segmentation in CT images of 
patients receiving radiotherapy for head and 
neck cancer71

Prediction of radiation dose 
distribution

Prediction of the 3D dose distribution 
of stereotactic body radiation therapy 
(SBRT) in patients with prostate cancer154; 
prediction of dose distribution in patients 
receiving radiotherapy for nasopharyngeal 
carcinoma155

Variational 
auto- encoders 
(VAE)

Neural networks that perform 
dimensionality reduction on input data 
converting it into low- dimensional 
latent vectors

Outcome prediction from unstructured 
data; for example, radiographic images

Prediction of radiation pneumonitis in 
patients with non- small- cell lung cancer 
(NSCLC)156; prediction of intrahepatic 
failure of disease control and overall 
survival in patients who received SBRT 
for hepatocellular carcinoma157

Generative 
adversarial 
networks (GAN)

Neural networks comprised of 
‘generator’ and ‘discriminator’ 
components that participate together 
in a zero- sum game; the generator 
attempts to generate synthetic samples 
that match the input data distribution, 
while the discriminator attempts  
to discern synthetic from real data

Generation of synthetic CT images Generation of synthetic CT images using 
only MRI data to enable accurate calculation 
of radiation dose in the pelvis for patients 
with prostate, rectal or cervical cancer35

Prediction of radiation dose 
distribution

Predicting optimal 3D radiation 
dose distributions for patients with 
oropharyngeal cancer158

Reinforcement 
learning (RL) with 
deep Q networks

RL involves training an agent to interact 
with its environment by performing 
‘actions’ and arriving at ‘states’; certain 
actions lead to ‘rewards’, which can be 
positive and negative

Radiation dose adaptation Automated radiation adaptation protocols 
for patients with NSCLC83

AI, artificial intelligence.
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In the following sections, we described the 
key tasks at each step, the staff members 
involved and notable examples of the 
potential facilitatory roles of AI. For steps 
in the workflow where we do not anticipate 
an important role for AI (for example, the 
actual delivery of radiation) we have not 
provided examples.

Initial treatment decision- making
Patient evaluation. The clinical radiation 
therapy workflow starts with patient 
intake and evaluation. This step typically 
involves a consultation by the radiation 
oncologist that includes a review of the 
patient’s symptoms, medical history, physical 
examination, pathological and genomic 
data, diagnostic studies, prognostication, 
comorbidities and risk of toxicities from 
radiotherapy; the radiation oncologist 
subsequently recommends a treatment 
plan based on a synthesis of these data 
(Fig. 2). An emerging challenge for clinicians 
involved in this process relates to the 
continuing accumulation of data to orders 
of magnitude beyond that which humans 
can rapidly absorb and interpret. AI- based 
methods that can automatically extract key 
clinically actionable features will be crucial to 
building decision support tools for clinicians 
at the initial point of care. AI approaches 
for medical imaging assessments21 and 
natural language processing for electronic 
medical records22,23 have shown initial 

promise in guiding treatment selection 
and/or the clinical management of patients 
with cancer. For example, prediction of the 
pathological response of involved lymph 
nodes in patients with non- small- cell lung 
cancer treated with chemoradiotherapy might 
inform the clinical decision to continue such 
therapy or proceed to surgery21. Moreover, 
such AI- based models have been reported 
to improve prognostication24,25 and predict 
treatment outcomes23,26–28, but have not yet 
been implemented in routine clinical practice.

Dose prescription. The prescribed dose of 
radiation to the tumour and dose constraints 
to the surrounding organs are determined by 
the radiation oncologist prior to treatment 
planning (Fig. 2), according to nationally 
accepted standards and evidence from 
clinical trials. However, variations in tumour 
biology can result in substantial differences 
in radiation sensitivity, even for a given 
cancer type. Furthermore, depending on 
the geometrical arrangement of the tumour 
and surrounding organs, the desired dose 
might not be achievable, which is often not 
realized until the planning process is near 
completion. AI platforms might enable 
the personalization of radiotherapy by 
predicting the radiation sensitivity of the 
tumour29 and the optimal dose prescription 
that is achievable with a specific treatment 
plan, based on the contours of the tumour 
and organs30.

Treatment planning and preparation
Treatment simulation — image acquisition, 
processing and registration. In preparation 
for treatment planning, simulation 
appointments take place during which the 
patient is immobilized to prevent substantial 
motion and, in most cases, medical images 
are acquired for use in formulating the 
treatment plan. Depending on the disease 
site, this process can be very complex, and 
optimal patient immobilization is subjective, 
and thus this process often requires 
radiation oncologist and medical physicist 
involvement (Fig. 2). For example, special 
consideration must be taken to evaluate 
potential interference between areas of 
the immobilization device and treatment 
beam angles or patient- specific issues that 
might result in collision with the treatment 
machine. Similar to how AI has been used 
to expedite treatment planning based on 
a patient’s anatomy30–32, we speculate that  
AI could have a role in identifying challenges 
that might be encountered at treatment 
simulation based on prior knowledge 
of the patient’s anatomy (obtained, for 
example, through diagnostic imaging) 
and could offer solutions derived from the 
algorithm training data, thus expediting and 
optimizing the planning process.

For many patients scheduled to receive 
radiation therapy, multiple types of medical 
images are required for treatment planning, 
including CT images for calculating the 
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Fig. 1 | applications of ai in the radiation therapy workflow. The image 
provides a general overview of the radiation therapy workflow with brief 
descriptions of expected applications of artificial intelligence (AI) at each 
step. The workflow begins with the decision to treat the patient with radi-
ation therapy, followed by a simulation appointment during which med-
ical images are acquired for treatment planning. Subsequently, the 
patient- specific treatment plan is created, and then the plan is subjected 

to approval, review and quality assurance (QA) measures prior to  
delivery of radiation to the patient. The patient then receives follow- up 
care. AI has the potential to improve radiation therapy for patients with  
cancer by increasing efficiency for the staff involved, improving the  
quality of treatments, and providing additional clinical information and 
predictions of treatment response to assist and improve clinical 
decision- making.
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radiation dose and MRI scans for tumour 
segmentation. Typically, these images 
are acquired with the patient in different 
positions (in the treatment position during 
CT, but in various other positions 
during diagnostic imaging using other 
modalities), which introduces uncertainty 
when aligning the images. Eliminating 
the need for CT by acquiring MRI data 
that can also provide electron density 
information (that is, a synthetic CT) is one 
method of minimizing this uncertainty. 
AI has been used to generate synthetic CT 
images from MRI images of the brain33,34 
and pelvis35, with minimal dose differences 
observed between the treatment plans 
formulated using synthetic CT versus true 
CT33,35. Additionally, this approach has the 
potential to improve clinical efficiency and 
costs by reducing the number of imaging 
appointments that patients need to attend, 
while also limiting their exposure to 
radiation from CT scans.

Advances in technology have led to the 
emerging roles of MRI in guiding radiation 
therapy and indeed the integration of MRI 
scanners with linear accelerators in a single 
treatment technology (MR Linac)36–38. 
High- resolution and low- noise MRI images 
require long acquisition times; thus, a 
compromise has to be made with regard to 
the resolution and signal- to- noise ratios that 
are achievable in the time available for image 
acquisition and other clinical tasks. AI has 
the potential to reduce MRI scan times by 
enabling reconstruction of fine details from 

undersampled MRI data, as demonstrated 
by the use of deep learning algorithms to 
generate high- resolution, high- contrast 
and low- noise brain39–41 and cardiac MRI 
images42 from undersampled data. Owing to 
the complexities of integrating MRI scanners 
with radiotherapy linear accelerators (that 
is, the distorting effects of the magnetic field 
on the radiation beams and the artefacts that 
the components of the linear accelerator 
can have on a magnetic field), current MR 
Linac systems are built with low- strength 
magnets, typically 0.35–1.5 T43–45, which 
reduces image quality compared with 
the high- resolution images obtain using 
conventional high- field- strength MRI 
scanners. AI could enable the reconstruction 
of high- signal, high- resolution images from 
low- field- strength MRI scans (for example, 
7- T MRI- like images of the brain from 3- T 
MRI data)46 to improve the visualization of 
tumours throughout the course of treatment.

Image registration is another integral part 
of the radiation therapy workflow in which 
data from multimodality and longitudinal 
imaging are used not only during treatment 
planning, but also immediately prior 
to delivery of each treatment fraction, 
as well as for real- time monitoring of 
radiation delivery. Commercially available 
automatic image- registration algorithms 
are typically designed to perform well 
only for modality- specific registration 
problems and are sensitive to image 
artefacts, which compromises accuracy and 
often requires additional manual edits to 

achieve a clinically acceptable registration. 
AI tools have been trained to determine 
the sequence of motion actions that 
result in optimal image alignment; these 
algorithms can achieve better accuracy and 
robustness than several state- of- the- art 
registration methods47 and are generalizable 
across multiple imaging modalities47,48. 
Furthermore, AI approaches have been 
shown to mitigate the effects of image 
artefacts (for example, with X- ray images 
of the spine that contained artefacts 
resulting from metal screws and guide 
wires)49 and motion artefacts (such as those 
commonly encountered with fetal MRI)50 
on registration accuracy. AI tools have been 
developed for initial applications in MRI51, 
X- ray49,52,53, CT–MRI54 and MRI–PET55 
image registration. Although many of 
these algorithms have not been developed 
specifically in the context of radiation 
therapy, the challenges they address are 
also faced in this context; therefore, these 
algorithms could potentially be applied to 
improve the radiation therapy workflow.

Image segmentation and dosimetric 
treatment planning. Currently, manual 
segmentation of the primary tumour and 
affected lymph nodes is one of the most 
time- consuming but crucial tasks performed 
by the radiation oncologist (Fig. 2). The 
accuracy of tumour segmentation can 
directly affect outcomes: an incorrectly 
delineated tumour can lead to underdosing 
or overdosing, resulting in a decrease in 
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Fig. 2 | Staff involvement and patient-facing steps in the radiation 
therapy workflow. The radiation therapy workflow can be broken down 
into four main stages: patient evaluation and development of the clini-
cal plan, preparation of the treatment (including quality assurance pro-
cedures), treatment setup and delivery, and completion. Each of these 

stages involves various steps and members of the radiation therapy 
team, such as radiation oncologists, medical physicists, dosimetrists, 
therapists and administrative staff, as indicated in the image. The staff 
members involved in patient- facing ‘front- of- house’ tasks are also 
indicated.
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the likelihood of tumour control or an 
increased risk of toxicities, respectively. 
Tumour segmentation is subject to inter- 
observer variation, even among expert 
radiation oncologists56,57, which can lead 
to differences in the quality of treatment 
plans, with consequent effects on survival 
outcomes9,10,58,59. Current semi- automated 
segmentation tools that incorporate prior 
knowledge from reference images, such 
as segmentation atlases, are unreliable or 
inaccessible to many radiation oncologists 
owing to high costs and still require 
substantial manual input60,61. AI has 
the potential to dramatically increase the 
efficiency, reproducibility and quality of 
radiation treatment planning by enabling 
almost completely or possibly even fully 
automated segmentation approaches, 
such as those developed for contouring 
of nasopharyngeal carcinomas62, primary 
lung tumours63 and oropharyngeal 
carcinomas64. Importantly, the performance 
of these segmentation algorithms is similar 
to that achieved by human experts62–64. 
Nevertheless, further studies, particularly 
prospective studies, are required to directly 
compare the efficiency, accuracy and 
reproducibility of such AI tools against the 
current gold- standard approaches within 
the radiation therapy clinical workflow.

During radiation treatment planning, 
organs adjacent to the tumour are also 
segmented in order to calculate the radiation 
dose delivered to those crucial organs and 
ensure that it falls within safe limits. Early 
AI tools have demonstrated promise in 
delineating a variety of organs throughout 
the body, including the complex anatomy  
of the head and neck region65, thoracic 
organs66, kidneys67, liver68,69 and cardiac 
substructures70; however, these findings 
are limited by small training sets and thus 
potential overfitting of the AI algorithms. 
The largest scale example of this approach 
reported to date involved an academic–
industry partnership between the University 
College London Hospitals Department of 
Radiotherapy and Google DeepMind, in 
which a training dataset of CT images from 
663 patients was used to develop an algorithm 
capable of segmenting organs in the head and 
neck region with performance comparable to 
that of human experts71. With commercially 
available AI- based auto- segmentation tools 
now starting to feature in treatment planning 
systems, additional tools are required for QA 
to identify errors. QA of auto- segmentations 
is a labour- intensive and time- consuming 
task, and is in turn another area in which 
AI- based QA tools could potentially reduce 
the required time and resources72.

Once provided with medical images, 
tumour and organ segmentations and 
the dose prescription, the medical 
dosimetrist aims to generate the optimal 
treatment plan for the patient, with the 
goal of maximizing the dose delivered to 
the tumour while sparing surrounding 
organs (Fig. 2). Treatment planning 
is a time- intensive, iterative process 
whereby the dosimetrist designs the dose 
distribution, making necessary changes on a 
trial- and- error basis in order to achieve the 
goals outlined in the dose prescription. 
The treatment plan is then evaluated by the 
radiation oncologist before approval for 
implementation. The quality of radiation 
treatment plans is dependent on several 
different human factors, such as the choice 
of radiation beam angles and optimization 
parameters for the plan, resulting in large 
variations both intra- institutionally and 
inter- institutionally73.

Current strategies to standardize and 
improve the efficiency of dosimetric 
treatment planning are not AI- based 
and involve the automation of repetitive 
tasks using hard- coded rules and/or the 
optimization of plan parameters according 
to predefined objectives using statistical 
methods74–78. The methods used are 
typically designed for specific anatomical 
sites and have a limited capacity to account 
for variations in plan complexity and 
patient- specific trade- offs.

AI tools for automating treatment 
planning have two main steps: 1) 
predicting the optimal dose distribution; 
and 2) identifying the treatment machine 
parameters required to achieve that 
distribution. The results of several studies 
demonstrate the ability of deep learning 
algorithms to predict the optimal dose 
distributions for individual patients based 
on their anatomy30–32 and to accelerate 
dose calculations79. In order for AI- based 
treatment- planning algorithms to generate 
a high- quality plan, information regarding 
the complex decision- making process 
needs to be included in the underlying 
model, similar to the approach used in the 
development of AI algorithms that are able 
to play Atari games80 or the board game Go81. 
In retrospective studies, researchers have 
applied these gamification concepts to 
automatically generate treatment plans for 
high- dose- rate brachytherapy in patients 
with cervical cancer82 or for radiation dose 
adaptation in patients with non- small- cell 
lung cancer83, with comparable or superior 
performance to that of human planners. 
Overall, AI techniques have the potential 
to substantially improve this crucial step in 

the radiation workflow, first by predicting 
what radiation dose distributions can be 
safely achieved in order that radiation 
oncologists can select the optimal treatment 
approach and, second, by subsequently 
generating the treatment plan for 
delivery of the optimal radiation dose. 
Thus, AI might enable full automation 
of the treatment- planning process in the 
near future.

Pretreatment review and verification
After the radiation oncologist approves 
the treatment plan, the medical physicist 
performs plan checks and other QA  
checks to ensure that all the technical 
components involved in treatment delivery 
are functioning and set correctly to deliver 
the intended dose to the patient (Fig. 2). 
AI tools have been developed to minimize the 
need for repetitive, time- consuming manual 
measurements and improve the efficiency of 
some QA activities, such as patient- specific 
and machine QA assessments.

Patient- specific QA involves assessment 
of treatment plans to detect human errors 
and potential anomalies in the performance 
of the treatment machine software and 
hardware as a whole (as opposed to machine 
QA, in which isolated parts of the device 
are tested) that might affect delivery of the 
specific treatment plan. These assessments 
include checking the suitability and accuracy 
of the plan and treatment parameters, and 
verifying the planned dose against the 
delivered dose. AI tools have been shown 
to expedite this process and to detect rare 
errors. For example, for highly complex 
treatment plans, a physical measurement 
of the delivered dose is obtained using 
a dosimeter- containing phantom and 
compared to the planned dose. The majority 
of plans pass this QA step, but in the 
rare case that a plan fails, many potential 
contributing factors require investigation, 
which might delay treatment. An AI 
algorithm has been designed to predict QA 
passing rates based on the treatment plan 
itself and to identify the possible sources of 
errors, potentially eliminating the need for 
physical dose measurements84,85.

Machine QA involves various 
assessments of treatment machine function, 
accuracy and precision that are conducted 
on a daily, weekly, monthly or annual 
basis. The plethora of data acquired during 
these evaluations has provided the means 
to develop AI algorithms that are capable 
of predicting trends and errors, such as 
multileaf collimator positional errors86 
and beam symmetry trends87, and of 
automatically detecting imaging artefacts 
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(such as scatter artefacts)88. These tools 
might improve the efficiency of the QA 
process and thus provide medical physicists 
with more time for other tasks.

Treatment setup and delivery
Scheduling. Patients receiving radiation 
therapy are required to attend the 
radiation oncology department for several 
appointments, including consultation, 
radiation dose planning, treatment and 
follow- up assessments, all of which can 
have varying durations and waiting times. 
Long waiting times negatively affect not 
only the efficiency of the clinic but also 
patient anxiety and satisfaction89. AI has 
the potential to identify the most important 
factors contributing to waiting time 
durations (such as the time of day, number 
of radiotherapy dose fractions, median 
past duration of treatments, number of 
treatment fields and previous treatment 
duration) and predict waiting times90, thus 
enabling optimization of clinic flow and 
efficiency. Using AI models, appointment 
scheduling could potentially be further 
optimized by organizing the sequence of 
patients according to anatomical treatment 
site and the immobilization and treatment 
techniques used in order to decrease the 
room turnover time between patients and 
accommodate a higher number of patients.

Image guidance and motion management. 
Setting up the patient in the same position 
that was used to create the treatment plan  
is a key part of radiotherapy delivery. 
Currently, the integrated cone beam CT 
(CBCT) device of the treatment machine 
is most commonly used for ‘on- treatment’ 
imaging to position the patient; however, 
CBCT provides images of much lower quality 
than the planning CT images. AI has been 
applied to improve the image quality of CBCT 
in order to enable more accurate positioning 
of patients for treatment91. Increasingly 
complex and multimodality imaging 
techniques are being incorporated into 
image-guided radiation therapy, including 
on- board MRI, ultrasonography and optical 
surface imaging, which presents a unique 
opportunity for imaging- based AI methods  
to enhance and/or synthesize complex data  
at the point of care.

Patient or organ motion throughout 
treatment can necessitate increases in the 
radiation dose delivered to non- malignant 
tissues in order to ensure that the tumour 
volume is adequately irradiated. Motion- 
management methods aim to reduce, 
capture and/or monitor the extent of 
motion from respiration and/or digestion92. 

However, considerable variability in motion 
exists between and within individuals 
in terms of magnitude, amplitude and 
frequency as well as the movement of organs 
relative to each other, which complicates 
predictive modelling of tumour motion. 
AI can be used to account for these diverse 
variables by generating patient- specific 
dynamic motion- management models 
that adapt to changes in patterns of motion 
in order to improve tumour tracking. 
To date, research in this area has largely 
focused on the prediction of respiratory 
motion using data collected from external 
surrogate positional markers as inputs for 
the models93–95. These algorithms could 
automatically adjust for complex breathing 
patterns in real time to accurately track 
tumour motion and predict the position  
of the tumour up to 800 ms in advance93.

Adaptive treatment. Substantial changes in 
a patient’s anatomy between the planning 
appointment and delivery of treatment 
(typically days or weeks later) or throughout 
treatment (often over several weeks) can 
warrant re- planning. These changes often 
reflect tumour shrinkage or growth, or 
anatomical variations (such as movement 
of internal organs or differences in gas or 
liquid filling of the bowels and stomach) that 
could potentially result in altered doses to 
the tumour and organs. Adaptive treatments 
involve creating a new treatment plan 
based on up- to- date images of the patient’s 
anatomy. Currently, the radiation oncologist 
must decide when anatomical changes are 
large enough to be clinically relevant based 
on their own qualitative assessment of the 
patient’s clinical parameters and images. 
AI might provide tools to predict which 
patients require adaptation of treatment and 
the ideal time point at which it should occur. 
In retrospective studies, AI models predicted 
geometric changes occurring in patients 
with head and neck cancer throughout 
treatment and identified the fourth week 
as the ideal time point for treatment 
adaptation96,97. Similar approaches have 
been applied in patients with lung cancer 
to identify the need to adapt treatment 
plans in order to maximize local tumour 
control98 and reduce radiation- induced 
pneumonitis83.

Completion of treatment
Response assessment and follow- up care.  
The Response Evaluation Criteria in 
Solid Tumors99 (RECIST) is the most 
widely adopted system for evaluating 
treatment response in patients with 
solid tumours based on their presence 

or absence and changes in their size. 
AI algorithms have the potential to provide 
more detailed information on tumour 
responses throughout the course of 
radiation therapy — for example, changes 
in tumour phenotype that are captured in 
imaging features and might provide better 
assessments of response and predictions of 
outcome than changes in size alone. Initial 
studies of the use of AI with pretreatment 
and post- treatment imaging for early 
assessment of response to various therapies 
have been conducted in patients with 
lung cancer and enabled prediction of 
cancer- specific outcomes, such as disease 
progression, development of distant 
metastasis and locoregional recurrence, 
as well as overall survival29,100,101. Similarly, 
AI has been used to predict treatment 
responses in patients with bladder102 or 
pancreatic cancer103,104.

The presence of radiation- induced tissue 
damage can not only reduce the reliability 
of RECIST definitions of response, but 
also obfuscate the detection of disease 
recurrence. Studies have shown that AI 
algorithms have the potential to detect early 
changes in the lung that are associated with 
local recurrence and might be overlooked 
by physicians as radiation- induced 
fibrosis105. This additional information 
would enable earlier, personalized treatment 
interventions to improve outcomes.

Toxicity prediction and management. The 
proactive, rather than reactive, management 
of acute and late toxicities in patients is 
complicated by the largely unpredictable 
occurrence and/or severity of such adverse 
effects. Nevertheless, predictive models 
of radiation toxicities can be generated 
based on imaging data and risk factors, 
including certain clinical characteristics, 
germline genomic variations and the 
radiation dose distribution, and can be 
used to guide treatment planning. To date, 
such approaches have focused mostly on 
subsets of these data sources and/or the 
extrapolation of radiobiological modelling 
from preclinical and observational studies106. 
AI is poised to enable these data streams 
to be analysed more comprehensively and 
thereby build more robust predictive models 
incorporating comorbidities, radiation dose 
and pretreatment imaging data107, which 
could provide clinical decision support for 
both the anticipatory management and 
secondary prevention of toxicities. For 
example, AI- based probability models of 
non- malignant tissue complications have 
been developed to predict the severity of 
acute dysphagia108, xerostomia109 and oral 
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mucositis110 in patients with head and neck 
cancer. AI tools for predicting radiation- 
induced pneumonitis111–113, oesophagitis114, 
rectal toxicities115 and epilepsy116 in patients 
with other cancer types have also been 
developed.

Pretreatment clinical data can also be 
used to provide guidance on potentially 
severe toxicities. In a retrospective study, 
several AI algorithms trained on clinical 
data from electronic medical records 
accurately predicted the risk of acute 
toxicities leading to emergency room visits 
and hospital admission in patients receiving 
radiotherapy or chemoradiotherapy 
(sensitivity of 81.0% and specificity of 
67.3% with the best- performing gradient 
tree- boosting method)23. The integration of 
multiple clinical data streams for advanced 
forecasting of adverse events during 
radiation therapy is a representative example 
of the power of AI to provide real- time, 
meaningful clinical decision support at  
the point of care.

Development challenges
Multiple challenges lie ahead on the path 
to developing clinical AI tools, with the 
availability of high- quality datasets for 
algorithm training and validation of 
these algorithms arguably being the most 
crucial factor. The amount of data needed 
to construct high- accuracy AI models is 
strongly dependent on the application and 
the nature of the outcome data. The wealth 
of data generated for every patient often 
requires laborious curation before it can be 
utilized in developing AI models, especially 
given the lack of consistent standards in the 
generation of these data. Areas that suffer 
from limited standardization of definitions 
include organ and non- malignant tissue 
annotation and contouring117, treatment 
techniques, the nature and timing of tumour 
recurrence, severity grading of toxicities, and 
the concepts and metrics used to evaluate 
treatment plans118,119. This deficiency 
hinders the sharing and aggregation of data 
across institutions, which is a prerequisite 
for developing AI models that accurately 
capture the full breadth of clinical variations 
while avoiding biases towards local 
standards. Although the creation of medical 
data repositories, such as The Cancer 
Imaging Archive120, has helped to promote 
data sharing, and professional organizations 
have attempted to standardize the radiation 
oncology ontology121,122, more work is 
needed in this area.

The proprietary nature of the 
treatment- planning software packages, 
and thus the limited knowledge of their 

optimization algorithms, is another hurdle 
facing the development of AI methods for 
radiation therapy. This challenge is being 
alleviated as some vendors start to release 
application programming interfaces that 
enable research efforts to communicate with 
and integrate AI algorithms into clinical 
software, albeit with restricted scopes.

Early AI research in radiation oncology 
has typically been focused on easily 
measured outcomes, such as overall 
survival, which might not be the outcome of 
greatest interest for all patients treated with 
radiotherapy. Instead, AI solutions will begin 
to move towards the prediction of outcomes 
that are more directly pertinent to radiation 
therapy, such as local tumour control and 
radiation- induced toxicities; however, the 
collection of robust outcome data continues 
to be a challenge.

Challenges to clinical implementation
Clinical adoption is a key barrier to 
realizing the potential of AI in radiation 
oncology; the introduction of AI tools 
will require upfront investment of 
time and resources as well as efforts to 
understand the utility and limitations of 
these tools and to redesign the current 
clinical workflows. Many AI tools remain 
at the proof- of- concept stage and lack 
external validation123, resulting in a slow 
translation into routine practice such that 
demonstration of generalizability and 
effectiveness becomes unattainable124. 
Establishing trust in AI systems is also 
crucial, given the ‘black box’ nature of many 
machine learning algorithms and specifically 
deep learning. Despite active research into 
the ‘interpretability’ and ‘explainability’ 
of AI125 (that is, understanding what an 
algorithm is doing and the underlying 
mechanics, respectively), the lack of 
transparency of AI hinders our ability to 
understand the outputs, predict failures and 
troubleshoot generalizability issues. Without 
actively monitoring the performance of 
deployed AI tools as well as continuous 
assessment of training data fit to the problem 
at hand, errors might increase as systematic 
biases are introduced into these systems.

Current AI tools are not perfectly 
accurate, and three criteria can be used 
to evaluate their potential for clinical 
implementation: 1) the time available for and 
the ability of the user to judge the accuracy 
of the result; 2) whether erroneous results 
can be corrected; and 3) the consequence 
of errors for a patient. Even in the case of 
potentially severe consequences, clinical 
implementation can be fairly straightforward 
as long as errors by the model are detected 

and corrected before moving on to the next 
step in the radiotherapy workflow. The 
potential for clinical implementation will 
be lower, however, if the time and ability 
required for the user to judge the accuracy 
of the result outweighs the efficiency 
or accuracy gains of using the AI tool. 
Furthermore, the risk- to- benefit ratio of 
using the AI- based tool is much more 
challenging to determine for applications in 
which the user cannot judge the correctness 
of the result (for example, when a tumour 
is not visible on an image and an AI tool is 
used for auto- segmentation). Tasks assisted 
or completed by AI that could have a 
substantial effect on a patient’s treatment 
will present a particular challenge to clinical 
implementation owing to the potential 
consequence for the patient.

From a legal standpoint, a means of 
governing algorithm- based decision- making 
has yet to be fully developed, including the 
right of patients to be given an explanation 
for algorithm outputs as well as the 
implications of data protection laws126,127. 
AI has the potential to reduce medical 
errors, but is also expected to alter the legal 
landscape surrounding clinical liabilities 
and responsibilities128. Indeed, the increased 
utilization of AI will change the dynamics 
of the patient–doctor relationship, likely 
with a shift towards a patient–health- care 
system relationship, thus potentially eroding 
the notion of personal responsibility of the 
doctor for the patient. In terms of ethics, 
algorithms used for facial detection129 or for 
predicting an offender’s risk of recidivism130 
have already demonstrated inherent racial 
biases, and applications of AI in health 
care are already starting to present similar 
problems131. Moreover, unethical AI 
approaches could potentially be developed 
by parties with ulterior motives to skew 
results towards financial gain132. All of these 
challenges must be addressed to enable the 
effective widespread clinical adoption of 
AI- based tools.

Regulation and clinical evaluation
Currently, AI technologies are classified  
as ‘software as a medical device’ by the FDA 
and international regulatory bodies133. Many 
of the applications of these technologies 
in radiation therapy will fall under 
these regulatory standards; for example, 
treatment- planning decision support 
software has been explicitly identified 
as software as a medical device134,135. Much 
discussion has focused on schedules for 
re- evaluation of new devices and on the 
regulatory requirements for locked versus 
continuously learning AI algorithms136, 
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although clearer standards for clinical 
evaluation of the utility of these devices 
are needed. Notably, AI tools can have 
implications for patient outcomes that 
can only be identified through robust 
retrospective or prospective studies 
carried out in representative populations.

Whereas randomized clinical trials 
are the gold standard in the evaluation 
of anticancer therapies, such studies 
are neither feasible nor necessary for all 
AI tools. Nevertheless, tools that have the 
potential to affect patient outcomes, costs 
and the efficiency of the clinical workflow 
(as opposed to AI tools for machine QA, 
for example) should be considered for 
prospective clinical evaluation137. Given the 
rapid proliferation of AI technologies, master 
protocols evaluating multiple technologies of 
a single class across a range of malignancies 
might increase the feasibility and efficiency 
of prospective evaluation137. Phase I/II 
studies might be adequate for low- risk 
devices that will remain under ongoing 
surveillance by health- care providers, 
although phase III studies will be needed 
for high- risk tools that are used without 
standard clinical oversight. Postmarketing 
surveillance will be crucial to assess the value 
of AI- based radiation therapy technologies, 
considering that the function of these tools 
might be affected by interactions with 
other hardware and software. High- quality, 
risk- stratified clinical validation can 
establish the value of, and engender trust in, 
AI technologies, which will be particularly 
important for these black- box systems that 
can have considerable effects on cancer care.

AI and the radiotherapy workforce
As the shift towards the integration of AI 
into radiation oncology clinics unfolds 
over the next few decades, the roles of staff 
members will be redefined, especially those 
that currently spend substantial amounts of 
time on repetitive tasks requiring manual 
input. AI will predominantly affect staff 
members that perform ‘back- of- house’ 
activities, including the technical aspects of 
radiation therapy (such as tumour and organ 
segmentation, plan design and QA), with 
less of an effect on ‘front- of- house’ activities 
involving direct interaction with patients, 
which are typically carried out by physicians, 
radiation therapists and nurses (Figs 2,3). 
In particular, nursing is a predominantly 
patient- facing profession, and thus the roles 
of nurses are unlikely to change substantially 
with the integration of AI into the clinic.

Implications for radiation oncologists
As AI- based segmentation algorithms 
begin to replace the manual segmentation 
performed by radiation oncologists, the 
focus of these physicians will shift to 
quality control of AI output and high-value, 
front- of- house activities of human 
interaction, such as patient counselling, 
education, support and clinical management 
(Fig. 3). Moreover, implementation of 
AI solutions will probably result in  
increased standardization of tumour 
segmentation and reduce unwarranted 
variation, particularly in under- resourced 
health- care environments, which might 
translate into improved clinical outcomes 
and quality of care.

Training of radiation oncologists will 
need to evolve from the current residency 
training models that focus on memorizing 
clinical facts and lengthy apprenticeships 
to gain expertise in performing manual 
segmentation and evaluating treatment 
plans. Instead, we predict that future training 
programmes will have an increased focus 
on instilling a deeper understanding of how 
to integrate and interpret information from 
large datasets in order to support clinical 
decision- making.

Implications for medical physicists
By analysing patterns and trends to predict 
when a technology needs to be serviced, 
AI tools have the potential to reduce the 
frequency and/or breadth of routine QA 
tasks performed by medical physicists.  
This change would cause a shift in the focus 
of medical physicists towards proactive 
prevention of non- routine, high- risk 
problems as well as the development and 
implementation of new technologies that 
require human creativity and intuition. As 
the field of radiation therapy moves towards 
more complex treatments, the role of the 
medical physicist will continue to be key 
to ensuring the accuracy, precision and 
clinical release of the technologies involved, 
including AI- based systems.

Additionally, thought leaders have 
called for the transitioning of medical 
physicists from back- of- house work to a 
more clinical, patient- facing role as a means 
of improving the quality of information 
provided to patients, as well as enhancing 
patients’ experiences and satisfaction with 

Patient
interaction

Computer
interaction

Both expected to have more

front-of-house roles

Front of house Back of house

Likely to focus on 

high-level decision-

making and spend more 

time with patients

Likely to have a more 

patient-facing role 

with the automation 

of quality assurance

Likely to focus more on 

complex cases and less on 

common treatment plans 

that can be automated

Medical
physicist

Radiation 
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Radiation 
therapist

Dosimetrist/
planner

Likely to witness faster 

patient turnaround times 

with automated setup 

and treatment delivery

Fig. 3 | Potential implications of applying ai in radiation oncology for 
members of the radiation therapy workforce. Radiation therapists, radi-
ation oncologists, medical physicists and dosimetrists are shown along a 
spectrum according to their overall level of involvement in patient- facing 

‘front- of- house’ tasks versus predominantly computational ‘back- of- house’ 
tasks. Our projections regarding how each profession is expected to evolve 
with the integration of artificial intelligence (AI) tools into the radiation 
therapy workflow are summarized.
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their care138–140. If this transition is realized, 
and with appropriate training139, our 
perspective is that the medical physicist’s 
role will be further strengthened, despite 
automation of their technical tasks (Fig. 3).

Implications for medical dosimetrists
Medical dosimetrists currently perform 
many of the manual treatment- planning 
tasks that are most likely to be superseded 
by AI approaches. Studies have revealed that 
variation in the quality of treatment plans is 
generally attributable to the overall ‘planner 
skill’141, as opposed to other parameters such 
as experience, certification and education. 
This finding underlines the potential 
benefits of automating dosimetrists’ tasks, 
especially the possibility of reducing the 
variability of delivered care. The potential 
for automation of treatment planning to 
reduce the workload of medical dosimetrists 
has been suggested to be dependent on the 
clinical accuracy of the plans generated142. 
Further evidence is required to provide 
sufficient confidence for a shift towards 
complete automation, yet data from early 
studies have demonstrated promising 
potential82,83. In the short term, we expect 
that the remit of dosimetrists will be 
focused on more high- risk and complex 
situations that present a challenge for 
current AI approaches (Fig. 3). We predict 
that automation with AI will probably 
disrupt this profession substantially in the 
long term. According to the 2017 American 
Association of Medical Dosimetry salary 
survey143, 45% of respondents felt they were 
affected by understaffing. Automation 
could potentially reduce the dosimetrists’ 
workload to reach appropriate staffing 
levels, although it might lead to substantial 
reductions in the number of dosimetrists.

Implications for radiation therapists
Radiation therapists serve as the final 
gatekeeper of treatment delivery to ensure 
patient safety and avoid misadministration 
of radiotherapy. As we have outlined, 
AI could provide software tools to help 
radiation therapists ensure accurate and safe 
treatment, as well as increase efficiency and 
patient access; however, we believe that the 
radiation therapists will continue to have an 
important role in being present to monitor 
the performance of these automated systems 
and the patient (Fig. 3).

Conclusions
Beyond gains in accuracy, reproducibility 
and consistency, partnering human  
intuition and the capacity of AI to leverage 
diverse information from large datasets 

has the potential to drastically improve 
efficiency and throughput in radiation 
therapy. These benefits have become 
of prime importance in the current era of 
cost reduction together with the shift from 
fee- for- service to value- based care144.

The global health landscape also stands 
to benefit from AI- based interventions145. 
Over half of all patients with cancer live in 
low- income or middle- income countries146. 
Workforce and equipment shortages in  
these resource- constrained settings have  
left >50% of patients who are expected to 
benefit from radiotherapy without access  
to this treatment, with this value being  
up to 90% in some low- income countries147. 
Software AI applications promise to  
alleviate some of these shortages by 
providing specialized expert knowledge 
across disease sites and treatment modalities. 
Whether hardware equipment shortages 
can be addressed with AI remains unclear, 
although AI might help to support the 
upkeep of existing equipment by facilitating 
the analysis of machine QA reports89.

Ultimately, the availability of AI tools 
will undoubtedly change the composition 
and skillset of the radiation oncology 
workforce; however, these changes will 
largely be positive and will enable the field 
to continue to bend the cost curve through 
greater efficiency while improving the 
quality of care.
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