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Abstract

IMPORTANCE Chest radiography is the most common diagnostic imaging test in medicine and may
also provide information about longevity and prognosis.

OBJECTIVE To develop and test a convolutional neural network (CNN) (named CXR-risk) to predict
long-term mortality, including noncancer death, from chest radiographs.

DESIGN, SETTING, AND PARTICIPANTS In this prognostic study, CXR-risk CNN development
(n = 41 856) and testing (n = 10 464) used data from the screening radiography arm of the Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) (n = 52 320), a community cohort of
asymptomatic nonsmokers and smokers (aged 55-74 years) enrolled at 10 US sites from November
8, 1993, through July 2, 2001. External testing used data from the screening radiography arm of the
National Lung Screening Trial (NLST) (n = 5493), a community cohort of heavy smokers (aged 55-74
years) enrolled at 21 US sites from August 2002, through April 2004. Data analysis was performed
from January 1, 2018, to May 23, 2019.

EXPOSURE Deep learning CXR-risk score (very low, low, moderate, high, and very high) based on
CNN analysis of the enrollment radiograph.

MAIN OUTCOMES AND MEASURES All-cause mortality. Prognostic value was assessed in the
context of radiologists’ diagnostic findings (eg, lung nodule) and standard risk factors (eg, age, sex,
and diabetes) and for cause-specific mortality.

RESULTS Among 10 464 PLCO participants (mean [SD] age, 62.4 [5.4] years; 5405 men [51.6%];
median follow-up, 12.2 years [interquartile range, 10.5-12.9 years]) and 5493 NLST test participants
(mean [SD] age, 61.7 [5.0] years; 3037 men [55.3%]; median follow-up, 6.3 years [interquartile range,
6.0-6.7 years]), there was a graded association between CXR-risk score and mortality. The very
high-risk group had mortality of 53.0% (PLCO) and 33.9% (NLST), which was higher compared with
the very low-risk group (PLCO: unadjusted hazard ratio [HR], 18.3 [95% CI, 14.5-23.2]; NLST:
unadjusted HR, 15.2 [95% CI, 9.2-25.3]; both P < .001). This association was robust to adjustment for
radiologists’ findings and risk factors (PLCO: adjusted HR [aHR], 4.8 [95% CI, 3.6-6.4]; NLST: aHR,
7.0 [95% CI, 4.0-12.1]; both P < .001). Comparable results were seen for lung cancer death (PLCO:
aHR, 11.1 [95% CI, 4.4-27.8]; NLST: aHR, 8.4 [95% CI, 2.5-28.0]; both P � .001) and for noncancer
cardiovascular death (PLCO: aHR, 3.6 [95% CI, 2.1-6.2]; NLST: aHR, 47.8 [95% CI, 6.1-374.9]; both
P < .001) and respiratory death (PLCO: aHR, 27.5 [95% CI, 7.7-97.8]; NLST: aHR, 31.9 [95% CI,
3.9-263.5]; both P � .001).
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Abstract (continued)

CONCLUSIONS AND RELEVANCE In this study, the deep learning CXR-risk score stratified the risk
of long-term mortality based on a single chest radiograph. Individuals at high risk of mortality may
benefit from prevention, screening, and lifestyle interventions.

JAMA Network Open. 2019;2(7):e197416. doi:10.1001/jamanetworkopen.2019.7416

Introduction

Chest radiography is the most common diagnostic imaging test in medicine.1 Chest radiography is
especially common in older adults; in 2013, there were 1039 outpatient chest radiographs per 1000
US Medicare Part B beneficiaries.2 Most chest radiographs are reported as normal, in that they rule
out a specific diagnosis such as pneumonia. However, even normal radiographs manifest additional
minor abnormalities, such as aortic calcification3 or an enlarged heart,4,5 that may provide a new
window into prognosis and longevity6 with the potential to inform decisions about lifestyle,
screening, and prevention.7 Whereas physicians may interpret thousands of chest radiographs
during a career, they rarely know the outcomes in these patients a decade later. Therefore, it is
difficult to develop an intuition to articulate which features have long-term prognostic value.

The traditional approach to identify prognostic imaging biomarkers has been to hypothesize
that an individual finding has value, manually assess the finding, and test its association with the
outcome. Deep learning, a type of artificial intelligence in which data are fed through many layers
with the composition of each layer learned automatically from large data sets, allows for a new
approach that evaluates the entire image without human guidance to differentiate what findings
have value.8,9 Deep learning models have been developed to make diagnoses based on chest
radiography, such as pneumonia, with the radiologists’ findings as the reference standard.10-16

However, whether deep learning can reach beyond diagnosis to assess long-term prognosis from
chest radiographs is not known.

To test the hypothesis that a deep learning model can extract prognostic information from
diagnostic radiographs, we developed a convolutional neural network (CNN) named CXR-risk to
predict 12-year mortality from chest radiographs. The final model was tested in 2 well-established,
multicenter clinical trials of screening chest radiography: the Prostate, Lung, Colorectal, and Ovarian
Cancer Screening Trial (PLCO)17 and the National Lung Screening Trial (NLST).18

Methods

Trial Data Sets
In this prognostic study, the CXR-risk CNN was developed and tested using data from the screening
radiography arm of the PLCO trial (n = 52 320), a community cohort of asymptomatic nonsmokers
and smokers (aged 55-74 years) enrolled at 10 US sites from November 8, 1993, through July 2,
2001.17,19 External testing used data from the screening radiography arm of the NLST (n = 5493), a
community cohort of heavy smokers (aged 55-74 years) enrolled at 21 US sites from August 2002,
through April 2004.18 Data analysis was performed from January 1, 2018, to May 23, 2019. The PLCO
and NLST participants provided written informed consent for the original trials. Secondary use of
PLCO and NLST data was approved by the National Cancer Institute, Bethesda, Maryland, and
Partners Healthcare, Boston, Massachusetts institutional review board.20 Secondary use of chest
radiographs from the NLST was further approved by the American College of Radiology Imaging
Network (ACRIN). This study followed the Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline.

The CXR-risk CNN development and the first round of testing (Figure 1) were performed in the
screening chest radiograph arm of the PLCO trial.17,19 Major exclusion criteria included a history of
prostate, lung, colorectal, or ovarian cancer or current treatment for any cancer (excluding basal and
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squamous cell skin cancer). Participants were randomized to annual chest radiography screening vs
no screening; the trial’s primary finding was that screening chest radiography did not reduce lung
cancer mortality.17 Participants had baseline (T0) and up to 3 yearly chest radiographs (T1-T3).
Participants whose baseline chest radiographs were available from the National Cancer Institute
(n = 52 320) were included. Of these patients, 41 856 (80%) were randomly assigned for model
development (PLCO development data set); the remaining 10 464 patients (20%) were reserved for
testing of the final model (PLCO test data set).

The final model was further externally tested in the chest radiograph arm of NLST (Figure 1).18

In contrast with PLCO, which included nonsmokers and smokers, NLST enrolled only current and
recent (smoking cessation within the past 15 years) former heavy smokers with a 30 pack-year or
more smoking history. Major exclusion criteria included a history of lung cancer or treatment for any
cancer (excluding nonmelanoma skin cancer or carcinoma in situ) within the past 5 years.18,21

Participants were randomized to screening chest radiography vs low-dose chest computed
tomography; the trial’s primary finding was that chest computed tomography reduced lung cancer
mortality by 20% compared with chest radiography.18 Similar to PLCO, baseline (T0) and yearly
(T1-T2) chest radiographs were obtained. We included an 83% random sample from 21 sites whose
baseline chest radiographs were available (NLST test data set [n = 5493]) from ACRIN.

Standard Risk Factors and Diagnostic Chest Radiograph Findings
Baseline risk factors, including age, sex, smoking status, diabetes, hypertension, obesity (body mass
index [BMI] �30 [calculated as weight in kilograms divided by height in meters squared]),
underweight (BMI <18.5), and previous myocardial infarction, stroke, or cancer, were self-reported.
Upright posterior-anterior chest radiographs were interpreted locally by centrally qualified

Figure 1. Data Sets for Deep Learning Model Development and Testing

154 901 Enrolled in the PLCO Cancer Screening Trial

77 445 Chest radiograph arm

67 037 Baseline chest radiograph

52 320 Baseline chest radiograph available

77 456 Usual care arm

10 408 No baseline chest radiograph

14 717 Baseline chest radiograph
not available

53 454 Enrolled in the NLST

18 842 Enrolled by ACRIN

9427 Chest radiograph arm

9362 Baseline chest radiograph

7724 Within 83% random sample

5493 Baseline chest radiograph available

34 612 Enrolled by Lung Screening
Study

9415 Chest CT arm

1638 Not in sample

2231 Baseline chest radiograph
performed by ACRIN but not
available in an anonymized
format

65 No chest radiograph baseline
or inadequate chest radiograph

5493 Included in NLST external test data set (5493
baseline chest radiographs) for testing of
final model

41 856 Included in PLCO development
data set (85 748 baseline and
year 1 chest radiographs) for
model training and tuning

10 464 Included in PLCO independent
test data set (10 464 baseline
chest radiographs) for testing
of final model

The Prostate, Lung, Colorectal, and Ovarian (PLCO) trial development data set includes
all baseline and year 1 chest radiographs, with several participants having more than 1
chest radiograph from either time point. The PLCO and National Lung Screening Trial

(NLST) testing data sets include a single baseline chest radiograph per person. ACRIN
indicates American College of Radiology Imaging Network; CT, computed tomography.
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radiologists for potentially significant diagnostic findings, including lung nodules, major atelectasis,
pleural plaque or effusion, lymphadenopathy, chest wall or bony lesion, chronic obstructive
pulmonary disease or emphysema, lung opacity, cardiomegaly or other cardiovascular abnormality,
and lung fibrosis. The radiologists’ findings were provided to the participants and their
physicians.18,19

Outcomes
The primary outcome was all-cause mortality. Participants were followed up until December 31,
2009, or for up to 13 years (PLCO) or 8 years (NLST).17,18 Death and incident cancer were assessed via
annual questionnaire, supplemented by communication with next of kin and linkage to the National
Death Index. The secondary outcome was cause-specific mortality, as reported in the parent trials
(eMethods in the Supplement).18,22

Data Sets for CNN Development and Testing
The CXR-risk CNN was developed in an 80% (41 856 of 52 320) random sample from PLCO
participants with a baseline chest radiograph (Figure 1). Development data set participants were
further randomly divided for model training (33 485 of 41 856 [80%]) and tuning (8371 [20%]). Each
development data set participant’s baseline and T1 chest radiographs were treated independently
(n = 85 748), with some participants having more than 1 baseline or T1 chest radiograph. The final
model was tested in the remaining 20% (10 464 of 52 320) of PLCO participants held out during
model development as an independent test data set (PLCO test).23 The model was further externally
tested in 5493 NLST participants (NLST test). Both test data sets included a single baseline chest
radiograph per participant to reflect the anticipated use case.

CNN Development
We used a transfer learning approach with a modified Inception-v4 architecture.24 Image
preprocessing, staged classifier, training hyperparameters, and implementation of the model are
described in the eMethods in the Supplement. The CNN was developed using the chest radiographs
and the staged classifier only; no other information, including age, sex, risk factors, chest radiograph
findings, duration of follow-up, or censoring, was available to the CNN. Gradient-weighted class
activation maps (Grad-CAM) were generated to localize the anatomy that contributed to
predictions.25

The CXR-Risk Score
The CXR-risk CNN takes as input a single chest radiograph image; the output is a continuous CXR-risk
probability (probability of death between 0 and 1). To facilitate interpretability of the survival
analysis, this output was converted to an ordinal CXR-risk score based on quantile thresholds set in
the PLCO development data set and then applied to the PLCO and NLST test data sets (eTable 1 in the
Supplement). The bottom first, second, and third quartiles corresponded to the very low-, low-, and
moderate-risk categories. The top 75th through 95th percentile was assigned as high risk, and the
top 95th and above percentile was considered as very high risk.

Test-Retest Reliability on Repeated Chest Radiographs
During the quality control process, several participants’ chest radiographs were repeated, usually
because the original did not include the entire lung or was overexposed. These images allowed an
analysis of test-retest reliability. The PLCO test participants who had multiple T1 chest radiographs
were chosen because these chest radiographs were not used in model development or testing. The
chest radiographs were manually reviewed to exclude duplicates.
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Statistical Analysis
We determined the association between the CXR-risk score and all-cause mortality (primary
outcome) using Cox proportional hazards regression models and Kaplan-Meier curves. We estimated
hazard ratios (HRs) and 95% CIs, both unadjusted and then adjusted for 9 diagnostic chest
radiograph findings (noncalcified lung nodule, major atelectasis, pleural plaque or effusion,
lymphadenopathy, chest wall or bony lesion, lung opacity, emphysema or chronic obstructive
pulmonary disease, cardiomegaly or other cardiovascular abnormality, and lung fibrosis) and 10
standard risk factors (age, sex, smoking category [current, former, or never], diabetes, hypertension,
obesity, underweight, and previous myocardial infarction, stroke, or cancer). Risk factors and findings
were prospectively selected as those available in both trials with likely prognostic value. Subgroup
analyses included those healthy or unhealthy at baseline (defined as previous myocardial infarction,
stroke, or cancer at enrollment) and in 5-year age and sex strata. Cox proportional hazards regression
models were constructed for secondary outcomes of cause-specific mortality due to lung cancer,
nonlung cancer, cardiovascular illness, and respiratory illness. The proportional hazards assumption
was tested with Schoenfeld residuals.26 Goodness of fit was assessed using the test by Grønnesby
and Borgan27 without gross model violations.

To assess discrimination for all-cause mortality, nested area under the receiver operating
characteristic curves (AUCs) with and without the continuous CXR-risk were compared using the
method by DeLong et al.28 The continuous net reclassification improvement of adding CXR-risk to
radiograph findings, risk factors, and findings plus risk factors was calculated using the risk prediction
(incrisk)29 package. Bootstrap standard errors and 95% CIs were calculated using 1000 bootstrap
samples.30 Calibration was assessed by plotting mean predicted vs observed mortality within deciles
of CXR-risk.31 For PLCO, 12-year predicted mortality was compared with 12-year observed mortality.
For NLST, 12-year predicted mortality was compared with 6-year observed mortality.

Interradiograph test-retest reliability was estimated with the intraclass correlation coefficient of
the continuous CXR-risk probability computed using a 2-way mixed-effects model with absolute
agreement for an individual measurement. The primary outcome was the HR for all-cause mortality,
with a threshold of significance of P < .05. P values were 2-sided. Statistical analysis was performed
with Stata, version 14.2 (StataCorp).

Results

Baseline Risk Factors and Chest Radiographs
Of 10 464 PLCO trial data set participants, 5405 (51.6%) were men with a mean (SD) age of 62.4 (5.4)
years. Of 5493 NLST test data set participants, 3037 (55.3%) were men, with a mean (SD) age of 61.7
(5.0) years. Baseline risk factors and radiograph findings for the PLCO development, PLCO test, and
NLST test data sets are presented in Table 1. Subsequent results are reported for PLCO test and NLST
test data sets only.

Vital Status
Median follow-up in the PLCO test data set was 12.2 years (interquartile range [IQR], 10.5-12.9 years).
The all-cause mortality rate was 13.4% (1402 of 10 464 persons) for 117 619 person-years of
follow-up. The NLST had half the median follow-up (6.3 years [IQR, 6.0-6.7 years]) and mortality
(6.8% [374 of 5493 persons]) for 33 695 person-years. The number of deaths per 1000 person-years
(Table 2) was similar in the PLCO data set (11.9 deaths; 95% CI, 11.3-12.6 deaths) and NLST data set
(11.1 deaths; 95% CI, 10.0-12.3 deaths).

CXR-Risk Score and All-Cause Mortality
The CXR-risk score had a graded association with mortality (Table 2). In the PLCO data set, mortality
rates were 3.8% (97 of 2543) in the very low-risk group, 7.8% (216 of 2769) in the low-risk group,
12.7% (339 of 2674) in the moderate-risk group, 24.9% (500 of 2006) in the high-risk group, and
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53.0% (250 of 472) in the very high-risk group. In NLST, mortality rates were similar after accounting
for the shorter duration of follow-up (very low-risk group: 2.7% [20 of 752]; low-risk group: 3.8% [64
of 1679]; moderate-risk group: 6.7% [115 of 1723]; high-risk group: 9.8% [114 of 1159]; very high-risk
group: 33.9% [61 of 180]). Similar numbers of deaths per 1000 person-years in each CXR-risk
category (Table 2) were noted: very low-risk group (3.3 [95% CI, 2.7-4.1] in the PLCO data set and 4.2
[95% CI, 2.7-6.6] in the NLST data set) and the very high-risk group (57.4 [95% CI, 50.8-65.0] in the
PLCO data set and 62.8 [95% CI, 48.8-80.7] in the NLST data set).

Kaplan-Meier survival estimates based on the CXR-risk score are provided in Figure 2. We
estimated HRs with 95% CIs for each CXR-risk category, with very low risk as the reference (Table 2).
There was a graded increase in mortality with increasing CXR-risk score. Persons in the very high-
risk group had higher mortality compared with those in the very low-risk group (PLCO data set:

Table 1. Baseline Risk Factors, Radiographic Findings, and Outcomesa

Characteristic

PLCO NLST
Development (Training and
Tuning) (n = 41 856)

Independent Test
(n = 10 464)

External Test
(n = 5493)

Chest radiographs, No.b 85 748 10 464 5493

Age, mean (SD), y 62.4 (5.4) 62.4 (5.4) 61.7 (5.0)

Male 21 648/41 856 (51.7) 5404/10 464 (51.6) 3037/5493 (55.3)

Race/ethnicity

White, non-Hispanic 36 295 (86.7) 9049 (86.5) 5105 (92.9)

Black, non-Hispanic 2451 (5.9) 642 (6.1) 221 (4.0)

Hispanic 775 (1.9) 207 (2.0) 49 (0.9)

Asian 1895 (4.5) 452 (4.3) 39 (0.7)

Other or unknown 440 (1.1) 114 (1.1) 79 (1.4)

Smoking

Never 18 598/41 776 (44.5) 4724/10 445 (45.2) NA

Former 18 750/41 776 (44.9) 4580/10 445 (43.9) 2769/5493 (50.4)

Current 4428/41 776 (10.6) 1141/10 445 (10.9) 2724/5493 (49.6)

Diabetes 3217/41 635 (7.7) 749/10 413 (7.2) 505/5481 (9.2)

Hypertension 13 937/41 635 (33.5) 3445/10 418 (33.1) 2021/5478 (36.9)

Obesity, BMI ≥30 9978/41 275 (24.2) 2513/10 326 (24.3) 1518/5484 (27.7)

Underweight, BMI <18.5 281/41 275 (0.68) 76/10 326 (0.74) 45/5484 (0.82)

Previous event

Myocardial infarctionc 3609/41 625 (8.7) 924/10 410 (8.9) 676/5470 (12.4)

Stroke 922/41 638 (2.2) 252/10 414 (2.4) 176/5470 (3.2)

Cancer 1824/41 779 (4.4) 431/10 445 (4.1) 228/5448 (4.2)

Baseline chest radiograph
findings

Lung nodule 3080/41 851 (7.4) 813/10 461 (7.8) 518/5493 (9.4)

Granuloma or benign
calcified nodule

4508/41 851 (10.8) 1102/10 461 (10.5) 660/5493 (12.0)

Major atelectasis 19/41 851 (0.1) 6/10 461 (0.1) 16/5493 (0.3)

Pleural plaque or effusion 1464/41 851 (3.5) 385/10 461 (3.7) 266/5493 (4.8)

Lymphadenopathy 234/41 851 (0.6) 59/10 461 (0.6) 16/5493 (0.3)

Chest wall or bony
abnormality

1831/14 851 (4.4) 433/10 461 (4.1) 22/5493 (0.4)

Lung opacity 320/41 851 (0.8) 76/10 461 (0.7) 9/5493 (0.2)

Emphysema or COPD 1084/41 851 (2.6) 257/10 461 (2.5) 810/5493 (14.8)

Cardiomegaly or other
cardiovascular abnormality

1637/41 851 (3.9) 391/10 461 (3.7) 62/5493 (1.1)

Lung fibrosis 3124/41 851 (7.5) 810/10 461 (7.7) 372/5493 (6.8)

Other 4284/4851 (10.2) 1118/10 461 (10.7) 733/5493 (13.3)

Outcomes

Follow-up, median (IQR), y 12.2 (10.5-12.9) 12.2 (10.5-12.9) 6.3 (6.0-6.7)

Mortality 5416/41 856 (12.9) 1402/10 464 (13.4) 374/5493 (6.8)

Abbreviations: BMI, body mass index (calculated as
weight in kilograms divided by height in meters
squared); COPD, chronic obstructive pulmonary
disease; IQR, interquartile range; NA, not applicable;
NLST, National Lung Screening Trial; PLCO, Prostate,
Lung, Colorectal, and Ovarian Trial.
a Data are presented as No./total No. (%) of patients

unless otherwise indicated.
b The PLCO development data set includes all available

baseline and year 1 chest radiographs. The PLCO test
and NLST test data sets include the baseline chest
radiographs only.

c In the NLST data set, this field includes both previous
myocardial infarction and heart disease.
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unadjusted HR, 18.3 [95% CI, 14.5-23.2]; NLST data set: unadjusted HR, 15.2 [95% CI, 9.2-25.3]; both
P < .001). There was less unadjusted hazard associated with diabetes (PLCO data set: unadjusted
HR, 2.7 [95% CI, 2.3-3.1]; P < .001; NLST data set: unadjusted HR, 1.9 [95% CI, 1.4-2.5]; P < .001), and
finding a lung nodule on the chest radiograph (PLCO data set: unadjusted HR, 1.5 [95% CI, 1.3-1.8];
P < .001; NLST data set: unadjusted HR, 1.9 [95% CI, 1.5-2.5]; P < .001).

The association between CXR-risk score and death was robust to adjustment for the
radiologists’ diagnostic findings (eg, lung nodule) and standard risk factors (eg, age, sex, and
diabetes), as detailed in Table 2 and eTable 2 in the Supplement. In the very high-risk group, adjusted
HRs (aHRs) were 4.8 (95% CI, 3.6-6.4; P < .001) in the PLCO data set and 7.0 (95% CI, 4.0-12.1;
P < .001) in the NLST data set. The aHR associated with diabetes was smaller (PLCO: aHR, 1.7 [95%
CI, 1.5-2.0]; P < .001; NLST data set: aHR, 1.5 [95% CI, 1.1-2.0]; P = .016), as was the aHR associated

Table 2. Mortality Based on CXR-Risk Score

CXR-Risk Score Mortality, No./Total No. (%)
Deaths per 1000
Person-Years (95% CI)

Unadjusted Adjusted

HR (95% CI) P Value HR (95% CI)a P Value
PLCO Test Data Set (12-y Follow-up)

Very low 97/2543 (3.8) 3.3 (2.7-4.1) 1 [Reference] NA 1 [Reference] NA

Low 216/2769 (7.8) 6.8 (5.9-7.7) 2.0 (1.6-2.6) <.001 1.4 (1.1-1.8) .003

Moderate 339/2674 (12.7) 11.1 (10.0-12.4) 3.3 (2.7-4.2) <.001 1.7 (1.3-2.2) <.001

High 500/2006 (24.9) 23.0 (21.1-25.1) 7.0 (5.6-8.6) <.001 2.6 (2.1-3.4) <.001

Very high 250/472 (53.0) 57.4 (50.8-65.0) 18.3 (14.5-23.2) <.001 4.8 (3.6-6.4) <.001

Total 1402/10 464 (13.4) 11.9 (11.3-12.6) NA NA NA NA

NLST Test Data Set (6-y Follow-up)

Very low 20/752 (2.7) 4.2 (2.7-6.6) 1 [Reference] NA 1 [Reference] NA

Low 64/1679 (3.8) 6.1 (4.8-7.8) 1.4 (0.9-2.4) .16 1.2 (0.7-1.9) .56

Moderate 115/1723 (6.7) 10.9 (9.1-13.1) 2.6 (1.6-4.1) <.001 1.7 (1.0-2.8) .03

High 114/1159 (9.8) 16.4 (13.6-20.0) 3.9 (2.4-6.3) <.001 2.3 (1.4-3.7) .002

Very high 61/180 (33.9) 62.8 (48.8-80.7) 15.2 (9.2-25.3) <.001 7.0 (4.0-12.1) <.001

Total 374/5493 (6.8) 11.1 (10.0-12.3) NA NA NA NA

Abbreviation: HR, hazard ratio; NA, not applicable; NLST, National Lung Screening Trial;
PLCO, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.
a Hazard ratios are adjusted for 9 chest radiograph findings (lung nodule, major

atelectasis, pleural plaque or effusion, lymphadenopathy, chest wall or bony lesion,

chronic obstructive pulmonary disease or emphysema, lung opacity, cardiomegaly or
other cardiovascular abnormality, and lung fibrosis) and 10 risk factors (age, sex,
smoking category, diabetes, hypertension, obesity, underweight, and previous
myocardial infarction, stroke, and cancer).

Figure 2. Kaplan-Meier Survival Estimates by CXR-Risk Score in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO)
and National Lung Screening Trial (NLST) Test Data Sets
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with lung nodule findings (PLCO data set: aHR, 1.3 [95% CI, 1.1-1.5]; P = .006; NLST data set: aHR, 1.6
[95% CI, 1.2-2.1]; P = .001) (eTable 3 in the Supplement).

Similar results were seen in stratified analyses of participants considered to be healthy at
baseline (no previous myocardial infarction, stroke, or cancer). Among 8915 PLCO participants who
were healthy at baseline, aHRs were 1.5 (95% CI, 1.1-1.9; P = .004) in the low-risk group, 1.7 (95% CI,
1.3-2.2; P < .001) in the moderate-risk group, 2.6 (95% CI, 2.0-3.4; P < .001) in the high-risk group,
and 4.8 (95% CI, 3.5-6.6; P < .001) in the very high-risk group. Among the 4427 NLST participants
who were healthy at baseline, aHRs were 1.1 (95% CI, 0.6-1.8; P = .78) in the low-risk group, 1.4 (95%
CI, 0.8-2.3; P = .25) in the moderate-risk group, 1.9 (95% CI, 1.1-3.3; P = .02) in the high-risk group,
and 4.8 (95% CI, 2.6-8.9; P < .001) in the very high-risk group. The association between CXR-risk and
death remained across age and sex strata (eFigure 1 in the Supplement).

Cause-Specific Mortality
Cause-specific mortality is provided in eTable 4 in the Supplement. In the PLCO data set, the most
common cause of death was cardiovascular illness (4.1% [432 of 10 464]); in the NLST data set, the
most common cause of death was lung cancer (2.1% [113 of 5493]). In both PLCO and NLST data sets,
after adjustment for risk factors and radiologists’ findings, patients in the very high-risk group were
significantly more likely to die of lung cancer (PLCO data set: aHR, 11.1 [95% CI, 4.4-27.8]; NLST data
set: aHR, 8.4 [95% CI, 2.5-28.0]; both P � .001), cardiovascular illness (PLCO data set: aHR, 3.6
[95% CI, 2.1-6.2]; NLST data set: aHR, 47.8 [95% CI, 6.1-374.9]; both P < .001), and respiratory illness
(PLCO data set: aHR, 27.5 [95% CI, 7.7-97.8]; P < .001; NLST data set: aHR, 31.9 [95% CI, 3.9-263.5];
P = .001).

Discrimination, Reclassification, and Calibration
Discrimination for all-cause mortality was assessed with nested AUCs (eTable 5 in the Supplement).
The CXR-risk AUC was 0.75 for 12-year mortality in the PLCO data set and 0.68 for 6-year mortality in
the NLST data set. Addition of CXR-risk was associated with significant AUC improvements compared
with chest radiograph findings (PLCO data set: 0.58 to 0.74; P < .001; NLST data set: 0.59 to 0.70;
P < .001), risk factors (PLCO data set: 0.76 to 0.78; P < .001; NLST data set: 0.68 to 0.72; P < .001),
and combined risk factors plus findings (PLCO data set: 0.76 to 0.78; P < .001; NLST data set: 0.70 to
0.73; P < .001). Corresponding continuous net reclassification improvements associated with adding
CXR-risk to findings (PLCO data set: 0.59; NLST data set: 0.44), risk factors (PLCO data set: 0.21;
NLST data set: 0.32), and combined risk factors plus findings (PLCO data set: 0.20; NLST data set:
0.28) were also significant (all P < .001). Calibration plots are provided in eFigure 2 in the
Supplement. The PLCO calibration slope was 1.17, indicating slight underestimation of observed
12-year mortality. The NLST calibration slope was approximately halved at 0.55, as would be
expected given that 12-year mortality was predicted while 6-year mortality was observed. Deviation
from the regression line was low, with an R2 of 0.99.

Test-Retest Reliability
The CXR-risk test-retest reliability based on 2 different radiographs was assessed in 573 PLCO test
participants whose T1 chest radiograph was repeated for quality control issues, with an intraclass
correlation coefficient of 0.89 (95% CI, 0.88-0.91).

Discussion

In this study, the deep learning CXR-risk score identified persons at low and high risk for long-term
mortality based on a single chest radiograph. Persons with a very high CXR-risk score had a 53%
mortality rate at 12 years in the PLCO data set and 34% at 6 years in the NLST data set, 18- and 15-fold
higher compared with the very low-risk category. In both trials, prognostic value was complementary
to the radiologists’ diagnostic findings (eg, lung nodule) and standard risk factors (eg, age, sex, and
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diabetes), with aHRs for death of 4.8 in the PLCO data set and 7.0 in the NLST data set. The CXR-risk
score was also independently associated with lung cancer death (aHR, 11.1 and 8.4), as well as
noncancer cardiovascular (aHR, 3.6 and 47.8) and respiratory (aHR, 27.5 and 31.9) death in both PLCO
and NLST test data sets, respectively.

To our knowledge, this was the first report of deep learning to predict long-term prognosis from
chest radiographs. The results extend observations based on other types of screening imaging. A
deep learning model to predict 5-year major adverse cardiovascular events from fundoscopic eye
images was developed in 48 101 UK Biobank healthy volunteers.32 As tested in 11 835 UK Biobank
participants, the model predicted major adverse cardiovascular events but was not incremental to
risk factors. A second deep learning model to predict 3-year all-cause mortality from chest computed
tomography was developed in 7983 smokers in the COPDGene study.33 When tested in 1000
COPDGene participants and 1672 Evaluation of COPD Longitudinally to Identify Predictive Surrogate
End Points (ECLIPSE) participants, the unadjusted HR ranged from 1.6 to 2.7. Taken as a whole, these
and our data suggest that deep learning can extract prognostic information from existing
diagnostic imaging.

Prognostic value was independent of radiographic findings traditionally used to diagnose lung
cancer, such as lung nodules and lymphadenopathy. The CXR-risk score predicted multiple causes of
death, including both lung cancer and noncancer death due to cardiovascular and respiratory illness.
In fact, most deaths were from causes other than lung cancer (eTable 4 in the Supplement). These
observations suggest that this CNN should not be considered as a lung cancer detector. Instead, we
speculate that it identified patterns on the chest radiograph not tied to a single diagnosis or disease
but as a summary measure of underlying prognosis and health. This concept of shared risk factors has
been established for other biomarkers.34 For example, traditional cardiovascular risk factors, the
coronary artery calcium score, and anti-inflammatory interleukin-1β therapy are associated with both
cardiovascular disease and incident cancer.35-37

The CXR-risk CNN was tested in data sets from the PLCO and NLST, 2 independent, well-
curated, multicenter randomized clinical trials of lung cancer screening in the community. The PLCO
followed up nonsmokers and smokers for a median of 12 years; NLST included a heavy smoking
population with median 6-year follow-up. Despite these differences, the CXR-risk score stratified
persons into risk categories with a similar number of deaths per 1000 person-years (Table 2),
suggesting generalizability. There was substantial improvement in AUC vs the radiologists’ chest
radiograph findings. Improvement in AUC vs risk factors was modest but similar to that reported for
adding the coronary artery calcium score, a guidelines-supported prognostic imaging marker,38 to
risk factors in the Multi-Ethnic Study of Atherosclerosis (AUC of 0.79 to 0.83 for 4-year major
coronary events).39

The trained model takes less than half a second to render a prediction from an existing chest
radiograph. How could these predictions be used in practice?40 Like other risk scores for all-cause
mortality,7 the CXR-risk score provides a summary measure of health and longevity but does not
specify a disease to be treated. Nevertheless, there was an independent association with lung cancer
death, even within the NLST cohort of long-term heavy smokers who would be conventionally
considered to be at high risk. Similar associations with noncancer cardiovascular and respiratory
death were seen in both data sets. For persons in the high- and very high-risk categories, a
reasonable first step would be to confirm guidelines-appropriate lung cancer screening with
computed tomography, as well as cardiovascular and respiratory primary prevention.41-43 This is
important because currently 95% of lung cancer screening–eligible persons do not have screening
computed tomography,18,44 and statin therapy is not taken by one-third of persons for whom it is
recommended.45 Future iterations of the CXR-risk score could be fine-tuned for specific disease
outcomes (eg, myocardial infarction) to complement existing risk factors and scores.38 The clinical
effect is yet to be defined but conceivably could help inform decisions about lifestyle, screening, and
prevention. On a population level, identifying those at greatest risk could help health systems
allocate resources. From a research standpoint, the CXR-risk score could be used for trial cohort
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enrichment or risk adjustment. The potential for unintended harms, including unnecessary testing,
denial of treatment, denial of insurance, worsening health disparities, and anxiety, should also be
considered. As with polygenic risk scores, there is the potential to provide prognosis without the
promise of a treatment to improve risk.46 Prospective clinical trials are needed to assess the effect on
decision making and health outcomes.47

Based on these potential implications, it will be important to understand the basis for individual
predictions. Class activation maps (Figure 3) localize the anatomy contributing to the CXR-risk score.
The cardiomediastinal silhouette, including the aortic knob and heart, were common focal points
and consistent with the observed predictive power for cardiovascular and respiratory death.
Activations in the lower contour of the breasts and chest wall impart information about age, sex, and
habitus, all of which are important factors for longevity. Class activation maps should be interpreted
with caution; whereas they localize anatomic features used to make predictions, what about that
anatomy led to the prediction is open to interpretation. Ongoing work toward explaining individual
predictions will be crucial for physician and patient acceptance of prognostic CNNs.48

The CXR-risk score took as input the radiograph only. This was intended to prove a point—that a
CNN can extract prognostic information embedded in the image, without any other demographic or
clinical information. Future deep learning models that incorporate this additional information,
including age, sex, other risk factors, blood biomarkers, other imaging and nonimaging tests, and
change over time will likely have greater prognostic value. Accuracy may also be further improved by
training the CNN against survival with knowledge of the time to event and censoring,49-51 increasing

Figure 3. Gradient-Weighted Class Activation Maps (Grad-CAM) of Anatomy Contributing to the CXR-Risk Score

Grad-CAM of a man in his 60sA Chest radiograph of a man in his 60sB Grad-CAM of a man in his 60sC Chest radiograph of a man in his 60sD

Grad-CAM of a man in his 60sE Chest radiograph of a man in his 60sF Grad-CAM of a woman in her 50sG Chest radiograph of a woman in
her 50s 

H

A and B, Grad-CAM (A) and chest radiograph (B) of a man in his 60s from the Prostate,
Lung, Colorectal, and Ovarian (PLCO) trial who died of respiratory illness in 2 years.
Grad-CAM highlights an enlarged heart with prominent pulmonary vasculature indicating
pulmonary edema (very high-risk CXR-risk score). C and D, Grad-CAM (C) and chest
radiograph (D) of a man in his 60s in the PLCO trial who died of cardiovascular illness in 7
years. Grad-CAM highlights the mediastinum and aortic knob, which may indicate
cardiovascular health; sternotomy wires indicate previous cardiothoracic surgery (very

high-risk CXR-risk score). E and F, Grad-CAM (E) and chest radiograph (F) of a man in his
60s in the National Lung Screening Trial who was alive at the end of 6-years follow-up.
Grad-CAM highlights the extrathoracic soft-tissues, which may reflect body habitus (low-
risk CXR-risk score). G and H, Grad-CAM (G) and chest radiograph (H) of a woman in her
50s in the PLCO trial who was alive at the end of 9-years follow-up. Grad-CAM highlights
the shadow of the left breast and waist, which convey information about sex and
habitus, important determinants of longevity (very low-risk CXR-risk score).
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the image resolution to allow detection of subtle abnormalities52 and with emerging CNN
architectures.

Limitations
Our analysis has limitations. The CNN was developed and tested in asymptomatic persons aged 55 to
74 years who had screening posterior-anterior chest radiographs. Whether these findings generalize
to symptomatic populations and to other radiographic techniques is unknown. Most PLCO (87%) and
NLST (93%) participants were of non-Hispanic white race/ethnicity; prognostic value will need to be
evaluated among other demographic groups.53

Conclusions

The results suggest that the CXR-risk CNN can stratify the risk of long-term mortality using chest
radiographs. Individuals at high risk may benefit from prevention, screening, and lifestyle
interventions. Further research is necessary to determine how this can improve individual and
population health.
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