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Abstract

Background

Non-small-cell lung cancer (NSCLC) patients often demonstrate varying clinical courses

and outcomes, even within the same tumor stage. This study explores deep learning appli-

cations in medical imaging allowing for the automated quantification of radiographic charac-

teristics and potentially improving patient stratification.

Methods and findings

We performed an integrative analysis on 7 independent datasets across 5 institutions total-

ing 1,194 NSCLC patients (age median = 68.3 years [range 32.5–93.3], survival median =

1.7 years [range 0.0–11.7]). Using external validation in computed tomography (CT) data,

we identified prognostic signatures using a 3D convolutional neural network (CNN) for

patients treated with radiotherapy (n = 771, age median = 68.0 years [range 32.5–93.3], sur-

vival median = 1.3 years [range 0.0–11.7]). We then employed a transfer learning approach

to achieve the same for surgery patients (n = 391, age median = 69.1 years [range 37.2–

88.0], survival median = 3.1 years [range 0.0–8.8]). We found that the CNN predictions were

significantly associated with 2-year overall survival from the start of respective treatment for

radiotherapy (area under the receiver operating characteristic curve [AUC] = 0.70 [95% CI

0.63–0.78], p < 0.001) and surgery (AUC = 0.71 [95% CI 0.60–0.82], p < 0.001) patients.

The CNN was also able to significantly stratify patients into low and high mortality risk

groups in both the radiotherapy (p < 0.001) and surgery (p = 0.03) datasets. Additionally, the

CNN was found to significantly outperform random forest models built on clinical parame-

ters—including age, sex, and tumor node metastasis stage—as well as demonstrate high

robustness against test–retest (intraclass correlation coefficient = 0.91) and inter-reader

(Spearman’s rank-order correlation = 0.88) variations. To gain a better understanding of the
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characteristics captured by the CNN, we identified regions with the most contribution

towards predictions and highlighted the importance of tumor-surrounding tissue in patient

stratification. We also present preliminary findings on the biological basis of the captured

phenotypes as being linked to cell cycle and transcriptional processes. Limitations include

the retrospective nature of this study as well as the opaque black box nature of deep learn-

ing networks.

Conclusions

Our results provide evidence that deep learning networks may be used for mortality risk

stratification based on standard-of-care CT images from NSCLC patients. This evidence

motivates future research into better deciphering the clinical and biological basis of deep

learning networks as well as validation in prospective data.

Author summary

Why was this study done?

• Cancer is one of the leading causes of death worldwide, with lung cancer being the sec-

ond most commonly diagnosed cancer in both men and women in the US.

• Prognosis in lung cancer patients is primarily determined through tumor staging, which

in turn is based on a relatively coarse and discrete stratification.

• Radiographic medical images offer patient- and tumor-specific information that could

be used to complement clinical prognostic evaluation efforts.

• Recent advances in radiomics through applications of artificial intelligence, computer

vision, and deep learning allow for the extraction and mining of numerous quantitative

features from radiographic images.

What did the researchers do and find?

• We designed an analysis setup comprising 7 independent datasets across 5 institutions

totaling 1,194 patients with non-small-cell lung cancer imaged with computed tomogra-

phy and treated with either radiotherapy or surgery.

• We evaluated the prognostic signatures of quantitative imaging features extracted

through deep learning networks, and assessed their ability to stratify patients into low

and high mortality risk groups as per a 2-year overall survival cutoff.

• In patients treated with surgery, deep learning networks significantly outperformed

models based on predefined tumor features as well as tumor volume and maximum

diameter.

• In addition to highlighting image regions with prognostic influence, we evaluated the

deep learning features for robustness against physiological imaging artifacts and input
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accessed at https://github.com/modelhub-ai/deep-

prognosis/tree/master/data. CNN implementation

can be accessed at https://github.com/modelhub-

ai/deep-prognosis/tree/master/contrib_src/model.
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other random forest models can be accessed at
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tree/master/R_files. Gene set enrichment analysis

(GSEA) files can be accessed at https://github.com/

modelhub-ai/deep-prognosis/tree/master/gsea.

This analysis uses the GSEA desktop application

developed by the Broad Institute and can be

downloaded at http://software.broadinstitute.org/
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variability, as well as correlated them with molecular information through gene expres-

sion data.

What do these findings mean?

• We found that deep learning features significantly outperform existing prognostication

methods in surgery patients, hinting at their utility in patient stratification and poten-

tially sparing low mortality risk groups from adjuvant chemotherapy.

• We demonstrated that areas within and beyond the tumor—especially the tumor–

stroma interfaces—had the largest contributions to the prognostic signature, highlight-

ing the importance of tumor-surrounding tissue in patient stratification.

• Preliminary genomic associations in this study suggest correlations between the deep

learning feature representations and cell cycle and transcriptional processes.

• Despite their obscure inner workings and lack of a strong theoretical backing, deep

learning networks demonstrate a prognostic signal and robustness against specific noise

artifacts. This finding motivates further prospective studies validating their utility in

patient stratification and the development of personalized cancer treatment plans.

Introduction

Cancer’s ever-evolving nature and interaction with its surroundings continue to challenge

patients, clinicians, and researchers alike. One of its deadliest forms appears in the lungs, lead-

ing to the most cancer-related mortalities worldwide [1]. Lung cancer is the second most com-

monly diagnosed cancer in both men and women [2], with non-small-cell lung cancer

(NSCLC) comprising 85% of cases [3]. The ability to accurately categorize NSCLC patients

into groups structured around clinical factors represents a crucial step in cancer care. This

stratification allows for evaluating tumor progression, establishing prognosis, providing stan-

dard terminologies for effective clinical communication, and, most importantly, identifying

appropriate treatment plans from chemotherapy and surgery to radiation and targeted ther-

apy. In addition to clinical factors (including performance status) and, to a lesser extent, age

and sex [4], tumor stage—as evaluated through the predominant tumor node metastasis

(TNM) staging manual [5]—is often regarded as a universal benchmark for performing such

stratification.

The predominant TNM staging manual represents a body of knowledge combining evi-

dence-based findings from clinical studies with empirical knowledge from site-specific experts

[6]. However, we find that patients within the same stage can exhibit wide variations in their

response to treatment [7]. This owes, in part, to the inevitable gap that exists between yester-

day’s statistics and today’s more advanced treatment options, as well as the practical challenges

of stratifying patients into groups that fit historical data while balancing the ability of clinicians

to identify the stratification features and apply the stratification algorithm at the point of care

[8]. The limitations of our clinical gold standards, combined with our improved understand-

ing of intra-tumor heterogeneity [9], signal the need for developing personalized biomarkers

that can operate at the individual patient level—as opposed to the population level—eventually
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leading to more robust patient stratification and building a foundation for precision oncology

practices.

The aforementioned clinician-driven stratification algorithms used in NSCLC staging rely

on high-level semantic features describing tumor extent, location, and metastatic status. These

are often inferred from standard medical images of the upper abdomen and thorax. These

non-invasive images, however, offer information that goes beyond that captured through rou-

tine radiographic evaluation. Hardware advances in high-resolution image acquisition equip-

ment and computational processing power, coupled with novel artificial intelligence (AI)

algorithms and large amounts of data, have contributed to a proliferation of AI applications in

radiology, medicine, and beyond. These have enabled the high-throughput extraction, and

subsequent processing, of high-dimensional quantitative features from images. More specifi-

cally, this dialogue between AI and medical imaging has been recently manifested in

radiomics.

Radiomics is a data-centric field involving the extraction and mining of quantitative fea-

tures as a means to quantify the solid tumor radiographic phenotype [10]. It hypothesizes that

radiographic phenotypes represent underlying pathophysiologies and are thus capable of dis-

criminating between disease forms as well as predicting prognosis and therapeutic response

[11]. Radiomics research has primarily relied on explicitly programmed algorithms that extract

engineered (hand-crafted) imaging features. Such features commonly represent tumor shape,

voxel intensity information (statistics), and patterns (textures). More specifically within oncol-

ogy, radiomics has demonstrated success in stratifying tumor histology [12], tumor grades

[13], and clinical outcomes [10]. Additionally, associations with underlying gene expression

patterns have also been reported [14]. Given these associations, radiomic features have been

used to build prognostic and predictive models making use of statistical machine learning

algorithms coupled with feature selection strategies [15]. More recent work, however, has

shifted towards deep learning as the de facto machine learning approach [16].

Deep learning has shown great promise in areas that rely on imaging data, including radiol-

ogy [17], pathology [18], dermatology [19], and ophthalmology [20] to name a few. In lieu of

the often subjective visual assessment of images by trained clinicians, deep learning automati-

cally identifies complex patterns in data and hence provides evaluations in a quantitative man-

ner. In contrast with feature engineering approaches, deep learning networks allow for the

automated quantification and selection of the most robust features, and thus they require little

to no human input. Deep learning methods have outperformed their engineered feature coun-

terparts in many tasks including mammographic lesion detection [21], mortality prediction

[22], and multimodal image registration [23].

Convolutional neural networks (CNNs) are a class of deep learning models that combine

imaging filters with artificial neural networks through a series of successive linear and nonlin-

ear layers. CNN layers learn increasingly higher level features from images, eventually making

predictions by essentially mapping image inputs to desired outputs. CNNs have demonstrated

great potential in various classification [24], detection [25], segmentation [26], registration

[27], and reconstruction [28] tasks—learning from photographic, pathology, and radiographic

images [17]. Other efforts use pretrained networks on images from other domains, an

approach known as transfer learning [29], as a workaround when sample size is perceived to

be insufficient. In some instances, classifiers are built using a combination of deep learning

and engineered features [30]. However, and with a few exceptions, most studies lack generali-

zation power due to insufficient data—usually under 100 patients. With such limited data, and

to avoid overfitting, most efforts have been confined to solving 2D problems, or, alternatively,

a 3D problem space is often treated as a composition of 2D orthogonal planes [31], with a few

recent studies capitalizing on information within the entire 3D tumor volume [32]. To our
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knowledge, no studies to date have explored medical-to-medical transfer learning, with

learned representations usually being transferred from general imagery. Only a few studies

have assessed the stability of deep learning features extracted from medical images, with most

solely relying on the presumed robustness of CNNs in other application areas.

In this study, we investigated the ability of deep learning networks, 3D CNNs in particular,

to quantify radiographic tumor characteristics and predict overall survival likelihood. We

designed a rigorous analytical setup (Fig 1), with 7 large and independent datasets of 1,194

NSCLC patients imaged with computed tomography (CT) across 5 institutions, to discover

and validate the prognostic power of CNNs in patients treated with radiotherapy and surgery.

The prognosis is formulated as a binary 2-year overall survival classification problem. We

benchmarked the CNN’s performance against models built on clinical parameters and engi-

neered features, as well as demonstrated its stability in both test–retest and inter-reader vari-

ability scenarios. To gain a better understanding of the characteristics captured by the CNN,

we mapped salient regions in images as per their contributions to predictions, both within and

beyond the tumor. Additionally, we aimed at assessing the driving biological pathways as a

means to explore the biological basis of the captured phenotypes. Our results highlight the

improved performance of deep learning networks over their engineered counterparts, their

robustness against specific types of input variability, their perceived biological basis, and their

ultimate potential in improving patient stratification.

Methods

Datasets

We utilized 7 independent datasets in this study (S1 Table; S1 Text)—3 radiotherapy datasets,

3 surgery datasets, and a stability assessment dataset. They come from a combination of Euro-

pean and US institutions as well as open-access online repositories.

Radiotherapy dataset group. The radiotherapy dataset group consists of the following

datasets:

• HarvardRT (training) consists of 317 NSCLC stage I–IIIb patients imaged with CT, with or

without intravenous contrast, and treated with radiation therapy at the Dana-Farber Cancer

Institute and Brigham and Women’s Hospital, Boston, Massachusetts, US. Images were

acquired between 2001 and 2015.

• Radboud (tuning) consists of 147 NSCLC stage I–IIIb patients imaged with contrast-

enhanced CT and treated with radiation therapy at Radboud University Medical Center,

Nijmegen, The Netherlands. Images were acquired between February 2004 and October

2011.

• Maastro (testing) consists of 307 NSCLC stage I–IIIb patients, imaged with CT, with or

without intravenous contrast, and treated with radiation therapy at MAASTRO Clinic,

Maastricht, The Netherlands. Images were acquired between 2004 and 2010. This dataset is

available at https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics.

Surgical dataset group. The surgical dataset group consists of the following datasets:

• Moffitt (training) consists of 200 NSCLC stage I–IIIb patients imaged primarily (89%) with

contrast-enhanced CT and treated with surgical dissection at the Thoracic Oncology Pro-

gram at the H. Lee Moffitt Cancer Center, Tampa, Florida, US. Images were acquired

between 2006 and 2009.
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• MUMC (tuning) consists of 90 NSCLC stage I–IIIb patients, imaged with CT, with or with-

out intravenous contrast, and treated with surgical dissection at MAASTRO Clinic, Maas-

tricht, The Netherlands. Images were acquired between 2004 and 2010. This dataset is

available at https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics-

Genomics.

• M-SPORE (testing) consists of 101 NSCLC stage I–IIIb patients imaged with contrast-

enhanced CT and treated with surgical dissection at the Thoracic Oncology Program at the

H. Lee Moffitt Cancer Center, Tampa, Florida, US. Images were acquired between 2006 and

2009.

Stability assessment dataset. The stability assessment dataset comprises the following:

• RIDER consists of 32 patients with NSCLC, each of whom underwent 2 CT scans of the

chest within 15 minutes [33]. Images were acquired between January 2007 and September

2007. This dataset is available at https://wiki.cancerimagingarchive.net/display/Public/

RIDER+Collections.

Overall survival times were calculated from the start of respective treatment for the radio-

therapy and surgery datasets. These continuous survival times were dichotomized using a

2-year cutoff. Datasets were then right-censored; alive patients at a last known follow-up of

less than 2 years were excluded. This setup allows for a binary 2-year survival endpoint of 0 for

deceased patients and 1 for alive patients—relative to the 2-year cutoff. To ensure non-biased

dataset assignment for training, tuning, and testing, datasets with the most and least patients

Fig 1. General design of the analytical setup. 3D convolutional neural network is trained end-to-end on the radiotherapy dataset

group. This is followed by a transfer learning approach, where the same network is fine-tuned on the surgery dataset group. The

training, tuning, and testing of these networks are all carried out on independent datasets as illustrated. Four further experiments are

carried out on the networks in order to benchmark their performance against random forest models, assess their stability, identify

regions in images responsible for predictions, and finally, explore their biological basis. Numbers outside parentheses refer to the

number of patients with survival follow-up per dataset. Numbers within parentheses refer to the number of patients with 2-year

overall survival follow-up only. Refer to Methods for patient censoring information and S1 Table for further dataset breakdown and

information.

https://doi.org/10.1371/journal.pmed.1002711.g001
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were assigned as training and tuning, respectively. The remaining dataset was locked for test-

ing. This assignment system was applied to both the radiotherapy and surgery dataset groups.

Initial experiments were done on the radiotherapy datasets as they contained the most data,

followed by transfer learning and fine-tuning on the surgery datasets. This design also allowed

for averting noise as a result of large variability in tumor sizes between the 2 dataset groups,

with the surgery group comprising consistently smaller tumors on average. All patients were

utilized as per the survival data available, without introducing artificial temporal cutoffs.

Data preprocessing

Tumors were manually contoured and approved by an expert reader (S1 Text). With slice

thickness exceeding in-plane resolution, all datasets were resampled into isotropic voxels of

unit dimension to ensure comparability, where 1 voxel corresponds to 1 mm3. This was

achieved using linear and nearest neighbor interpolations for the image and annotations,

respectively. If multiple disconnected annotation masks were found, the largest by volume was

chosen.

Data preprocessing for deep learning

Given full 3D tumor segmentations, both the center of mass (COM) and bounding box of the

tumor annotations were calculated. 3D isotropic patches of size 50 × 50 × 50 were extracted

around each COM, capturing around 60% of the tumor bounding boxes’ dimensions in the

radiotherapy training dataset (S1 Fig). The patches were then normalized to a 0–1 range using

lower and upper Hounsfield unit bounds of −1,024 and 3,071, respectively. An augmentation

factor of 32,000 was applied to the patches, yielding a training size of approximately 9.4 million

and 5.9 million input samples for the radiotherapy and surgery datasets, respectively. These

augmentations included random translations ±10 pixels in all 3 axes, random rotation at 90˚

intervals along the longitudinal axes only, and random flipping along all 3 axes. Augmentation

was done in real time during training. No tuning- or testing-time augmentation was applied.

Deep learning

We employed a 3D CNN architecture (Fig 2). The network comprises a total of 4 3D convolu-

tional layers of 64, 128, 256, and 512 filters with kernel sizes of 5 × 5 × 5, 3 × 3 × 3, 3 × 3 × 3,

and 3 × 3 × 3, respectively. Two max pooling layers of kernel size 3 × 3 × 3 were applied after

the second and fourth convolutional layers. A series of 4 fully connected layers—with 13,824,

512, 256, and 2 units—provided high-level reasoning before the prediction probabilities were

calculated in the final softmax classifier layer. Training details are as follows: We used the gra-

dient-based stochastic optimizer Adam [34] with a global learning rate of 1 × 10−03 without

decay, a batch size of 16, dropout [35] of 25% and 50% on the convolutional and fully con-

nected layers, respectively, and a L2 regularization [36] penalty term of 1 × 10−05. To avoid the

internal covariance shift problem [37], batch normalization was applied across all layers, with

the input layer as an exception. Leaky rectified linear units (leaky ReLUs) [38] with alpha = 0.1

were the activation function of choice across the entire network prior to the final softmax acti-

vation. In training the CNN within the radiotherapy dataset, we used a random grid search

exploring different hyper-parameters including input patch size, batch size, learning rate, reg-

ularization term, and convolution kernel size. As for the general architecture, we started with a

shallow network, where underfitting occurs, and incrementally added layers. The model was

optimized on the tuning dataset using early stopping [39]. With a 1,000-epoch limit, the model

with the best performance on the tuning dataset was chosen. In applying transfer learning on

the surgery training dataset, the number of final layers to fine-tune was explored. The optimal
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setting included fine-tuning the final classification layer only, while keeping earlier layers

fixed. With much fewer parameters to train, the learning rate and batch size were increased to

1 × 10−02 and 24, respectively. Google’s deep learning framework TensorFlow [40] was used to

train, tune, and test the CNN.

Data preprocessing for engineered feature extraction

Image intensity was binned by 25 HU to increase pattern sensitivity. Preprocessing filters were

applied prior to feature extraction in order to reveal underlying information. These included

Laplacian of Gaussian, wavelet, square, exponential, square root, and logarithm filters.

Engineered feature extraction and selection

Engineered features were computed using PyRadiomics [41], an open-source radiomics pack-

age. Feature stability was quantified using the intraclass correlation coefficient (ICC), using

the irr package [42] and the test–retest RIDER dataset [33,43]. Features with an ICC> 0.8

were regarded as highly robust and selected for the study. Supervised selection was done using

the mRMR method (minimum redundancy maximum relevance) with the mRMRe package

[44]. The mRMR was applied on the tuning datasets to select the top 40 engineered features

with the highest mRMR ranks. Those features were then used for the final model on the train-

ing and testing datasets.

Machine learning on clinical parameters and engineered features

A random forest classifier was built using clinical parameters and engineered features. The

tuning process involved a nested cross-validation technique (5,000-fold, 5 times) using the

caret package [45] on the training dataset to select the best parameters, such as the number of

variables randomly sampled. The predictive power was measured on the testing dataset using

the area under the receiver operating characteristic curve (AUC). Significant difference from

random permutation was tested using a 2-sided Wilcoxon rank-sum test between the score of

the 2 classes.

Fig 2. Illustration of the convolutional neural network. This network was used to predict overall 2-year survival of patients with non-small-cell lung cancer. The

final classifier layer outputs normalized probabilities for both classes (0 = deceased and 1 = alive). Only the weights of the final fully connected layer were fine-

tuned during transfer learning. The final convolutional layer (conv4) was used for activation mapping.

https://doi.org/10.1371/journal.pmed.1002711.g002
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Benchmarking

Benchmarking of deep learning networks against other models was done using a permutation

test. AUC difference was defined as a Δ. For N permutations (N = 1,000 in our case), new mod-

els were built after randomly permuting class labels, and new AUCs were computed from their

respective scores. The new difference Δi was then converted to 0 if below Δ or 1 if above.

Finally, the p-value was defined as

p ¼
1

N

XN

i

Di; where Di ¼ 0 if Di < D;Di ¼ 1 if Di > D

If the AUC difference between those 2 random models was higher than the true value, then the

true class label was randomly permuted. A new model was then built, and its score distribution

was compared to the true distribution. Finally, a meta p-value was computed combining the

results of the radiotherapy and surgery datasets using the survcomp package [46].

Activation mapping

To generate activation maps, we used a gradient-weighted activation mapping method [47,48]

to map important regions in an input image with respect to predictions made. The final convo-

lutional layer (conv4 in Fig 2) was set as the penultimate layer where the activation heatmaps

(gradients) were generated during backpropagation. The heat maps were then thresholded at

0, normalized, and enlarged to match the input image size. The heatmaps indicate regions in

the input image having the most impact on the final prediction layer.

Masking experiment

Ground truth tumor annotations were used to delineate tumor areas, and all voxels beyond

the annotations were given the value of air (−1,000 HU). The deep learning network was

retrained with the masked data while keeping all hyper-parameters locked.

Genomic studies

We performed a pre-ranked gene set enrichment analysis (GSEA) as in previously published

studies [14,49,50]. Briefly, more than 60,000 probes measured global gene expression on cus-

tom Affymetrix 2.0 microarray chipsets (HuRSTA_2a520709.CDF, GEO accession number

GPL15048). Measured expression was normalized according to the robust multi-array aver-

age method [51]. Expression values were correlated with the network predictions to create a

rank of all genes using Spearman rank correlation coefficients. This gene rank was input to a

pre-ranked version of GSEA [52]. GSEA calculates scores that quantify the association of a

given rank of genes with a predefined list of gene sets representing biological pathways. In

such manner, GSEA allows for understanding what biological types of pathways the rank of

genes corresponds to. As gene sets, we tested expert-curated pathways from the C2 Reactome

collection version 6 available at MSigDB [53] using the GSEA software version 3 with 1,000

permutations. Gene sets were restricted to sizes between 5 and 500, resulting in 669 tested

gene sets. Expression data are publically available via [14] and at https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE58661. We used the GSEA software’s Normalized Enrich-

ment Score (NES) to quantify the association of the rank of genes with pathways and vali-

dated the NES with the false discovery rate (FDR) as per [54] to correct for multiple

hypothesis testing.
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Results

Tumor characterization using 3D deep learning networks

In assessing the ability of deep learning networks to quantify radiographic characteristics of

tumors, we performed an integrative analysis on 7 independent datasets totaling 1,194 patients

(Fig 1; S1 Table). We identified and independently validated prognostic signatures using a

CNN for patients treated with radiotherapy (n = 771, including 608 with 2-year survival fol-

low-up). We then employed a transfer learning approach to achieve the same for surgery

patients (n = 391, including 368 with 2-year survival follow-up). The architecture of the net-

work (Fig 2) was designed to receive 3D input cubes surrounding the center of the primary

tumor—based on clinician-located seed points. The network was trained to predict overall sur-

vival likelihood 2 years after the start of the respective treatment.

Starting with the radiotherapy patients, the analysis was split into a discovery phase and an

independent test phase (Fig 1; S1 Table). Within the discovery phase, a 3D CNN was trained

on the HarvardRT dataset (age median = 69.6 years [range 32.5–93.3], male/female = 140/153,

survival median = 2.2 years [range 0.0–11.7], 2-year survival deceased/alive = 134/159) using

augmentation, while the independent Radboud dataset (age median = 65.9 years [range 44.4–

85.9], male/female = not available, survival median = 0.9 years [range 0.1–8.2], 2-year survival

deceased/alive = 76/28) was used to iteratively tune and optimize the CNN’s hyper-parameters

as well as the tumor 3D input patch sizes (S1 Fig; Methods) until the best prediction score was

achieved. Beyond this discovery phase, the prognostic CNN was locked and tested on the inde-

pendent Maastro dataset (age median = 69.0 years [range 34.0–91.7], male/female = 142/69,

survival median = 1.0 years [range 0.0–5.8], 2-year survival deceased/alive = 151/60). The

CNN showed a significant prognostic power in predicting 2-year survival (AUC = 0.70 [95%

CI 0.63–0.78], p< 0.001) (Fig 3A). Kaplan–Meier curve analysis was performed to evaluate

the CNN’s performance in stratifying low and high mortality risk groups. A significant survival

difference (p< 0.001) was observed between the 2 groups on the independent Maastro dataset

(Fig 3B).

In order to develop a prognostic deep learning network for surgical patients, we employed

a transfer learning approach (Fig 1; S1 Table). The final prediction layers of the radiotherapy-

trained CNN were fine-tuned on the Moffitt dataset (age median = not available, male/

female = 83/100, survival median = 2.8 years [range 0.0–6.3], 2-year survival deceased/

alive = 50/133) using augmentation (Fig 2; Methods). The independent MUMC dataset (age

median = 68.0 years [range 37.2–83.3], male/female = 61/27, survival median = 3.3 years

[range 0.2–8.8], 2-year survival deceased/alive = 24/64) was used to iteratively tune and opti-

mize the CNN’s hyper-parameters as well as identify the optimum layers for fine-tuning. The

CNN was then locked and tested on the independent test dataset M-SPORE (age median = 70.0

years [range 46.0–88.0], male/female = 44/53, survival median = 4.5 years [range 0.3–7.8],

2-year survival deceased/alive = 17/80), where it demonstrated a significant prognostic perfor-

mance (AUC = 0.71 [95% CI 0.60–0.82], p< 0.001) (Fig 3C). Kaplan–Meier curve analysis

showed a significant survival difference (p = 0.03) between low and high mortality risk groups

within the M-SPORE test dataset (Fig 3D).

Benchmarking against clinical parameters and engineered imaging features

The deep learning networks were benchmarked against random forest models based on clini-

cal information (age, sex, and TNM stage). These clinical models achieved a performance of

AUC = 0.55 (95% CI 0.47–0.64, p = 0.21) and AUC = 0.58 (95% CI 0.39–0.77, p = 0.4) for the

radiotherapy and surgery datasets, respectively. Additionally, univariate analysis suggested
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Fig 3. Prognostic power (AUC) and Kaplan–Meier (KM) curves of deep learning features for both the radiotherapy and surgical networks. (A) AUC plot

for the radiotherapy test dataset Maastro (n = 211). (B) KM plot for the Maastro dataset (n = 307). Patients who have been previously excluded for lack of 2-year

survival follow-up have been reincluded (S1 Table). To ensure an independent evaluation, the median split is calculated on the radiotherapy tuning dataset

Radboud (n = 147) and locked for evaluation on the radiotherapy test dataset Maastro. (C) AUC plot for the surgery test dataset M-SPORE (n = 97). (D) KM

plot for the M-SPORE dataset (n = 101). The median split is calculated on the surgery tuning dataset MUMC (n = 90) and locked for evaluation on the surgery

test dataset M-SPORE. AUC or ROC-AUC, area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pmed.1002711.g003
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that these clinical variables did not have a significant association with survival (S2 Table).

Deep learning performed significantly better for both treatment types (S2 Fig).

The deep learning networks were also compared to random forest models based on engi-

neered features describing tumor shape, voxel intensity information (statistics), and patterns

(textures). The engineered feature models demonstrated a prognostic performance of

AUC = 0.66 (95% CI 0.58–0.75, p< 0.001) and AUC = 0.58 (95% CI 0.44–0.75, p = 0.275) for

the radiotherapy and surgery datasets, respectively (S2 Fig). Although the deep learning net-

works demonstrated improved performance over the engineered models for both patient

groups, this difference was not significant for radiotherapy patients (p = 0.132; permutation

test, N = 1,000), but was significant for surgery patients (p = 0.035; permutation test,

N = 1,000). These results were confirmed with a meta p-value test (p = 0.06).

Finally, the deep learning networks were compared to imaging parameters commonly used

in clinical practice, namely tumor volume and maximum diameter. We found that tumor vol-

ume achieved a performance of AUC = 0.64 (95% CI 0.56–0.73, p< 0.001) and AUC = 0.51

(95% CI 0.37–0.66, p = 0.85) for the radiotherapy and surgery datasets, respectively. The deep

learning networks were borderline non-significantly better on the radiotherapy dataset

(p = 0.056), and significantly better for the surgery dataset (p = 0.004), as confirmed with a

meta p-value test (p<0.001). Similar results were found for maximum diameter (S2 Fig).

Stability of deep learning networks

To evaluate the stability of the deep learning networks, we tested robustness against test–retest

scenarios as well as inter-reader variations in input seed annotations. We used the publicly

available test–retest RIDER dataset comprising 32 patients with lung cancer, each of whom

underwent 2 chest CT scans within 15 minutes using the same imaging protocol and in a simi-

lar position [33]. Using this dataset, we evaluated the stability of network predictions between

the test and retest scans. A high stability was demonstrated (ICC = 0.91) between both

predictions.

To assess stability against inter-reader variations in input data, we randomly relocated the

input seed points in 3D space around the center of the tumor (S3 Fig). This randomly shifts

the network inputs during testing and can be regarded as simulating multiple human readers

annotating the tumor’s center, with the inevitable variability among them. The network out-

puts show high correlation (Spearman’s rank-order correlation = 0.88). We also observed a

high stability in prognostic predictions (AUC, μ = 0.68, σ = 0.014) (S3 Fig).

Activation mapping of deep learning networks

To gain an understanding of regions within the CT images responsible for network predic-

tions, we mapped the network’s activation maps over the final convolutional layer (Fig 4). The

magnitudes of gradients flowing through this layer were used to decide on the “importance” of

each node or voxel relative to the final prediction layer. This analysis allowed us to highlight

the most relevant regions, with the most impact on predictions, both within and beyond the

tumor. We observed that the network tended to fixate on the interface between the tumor and

stroma (parenchyma or pleura). Most contributions to predictions came in the form of large

uninterrupted areas of relatively higher CT density—spanning regions within and beyond the

tumor. Areas with lower CT density, however, contributed the least to predictions. Examples

of these include lobe areas with infrequent vessels or jagged interfaces between low and high

CT density areas. We also observed that normal tissue, such as high-density bone tissue, was

disregarded—as it is likely to exist in most images and is thus non-informative. This visual

mapping demonstrates that tissue within and beyond the tumor were both crucial for
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characterization and eventual prediction. In order to further validate these findings, we

retrained the deep learning network with masked images—essentially discarding data beyond

the tumor. A drop in prognostic power was observed (from AUC = 0.70 to 0.63) (S4 Fig), hint-

ing at the existence of discriminative texture features in tumor-surrounding regions.

Biological basis of deep learning networks

We also explored the biological basis of the radiographic phenotypes quantified by the CNN

through investigating imaging and gene expression assays in the surgery training dataset Mof-

fitt (n = 200). We linked the CNN predictions to global gene expression patterns using a pre-

ranked GSEA. Notably, the majority of the most significantly enriched pathways (FDR� 10−3)

are directly linked to cell cycle and transcriptional processes (Fig 5; S1 File). For example,

Fig 4. Activation mapping. Visual highlights of the most “important” regions within the input image—those with the

most contribution to maximizing the outputs of the final prediction layer. The rows represent 4 randomly selected

samples. From the left, the first column represents the central axial slice of the network input (150 × 150 mm) with

tumor annotations. In the second column, a 50 × 50 mm patch is cropped around the tumor. In the third column,

activation contours are overlaid, with blue and red showing the lowest and highest contributions (gradients),

respectively. Column 4 represents the activation heatmaps for a better visual reference. While the heatmaps are 3D,

only the central axial slice is shown. Therefore, the entire color spectrum might not be fully visualized.

https://doi.org/10.1371/journal.pmed.1002711.g004
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Fig 5. Global gene set expression patterns—Moffitt dataset. The deep learning network predictions on the surgery training dataset Moffitt were linked to global gene

expression patterns using a pre-ranked gene set enrichment analysis (GSEA). Negative and positive enrichments are shown in red and blue, respectively. The top 10

enrichments in each category are highlighted. See S1 File for full ranking and associated enrichment scores.

https://doi.org/10.1371/journal.pmed.1002711.g005
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meiotic synapsis, telomere packaging, and various cell cycle stages such as G1 and S were

among the top associations. Notably, these enrichments were highly negative—thus suggesting

that the network predictions show inverse correlation to a proliferating phenotype. These

results were consistent when reproduced in the surgery tuning dataset MUMC (n = 90) (S5

Fig; S2 File), where cell cycle and proliferation pathways, as well as various transcriptional pro-

cesses, were observed among the most significant associations.

Discussion

In this study, we assessed the utility of deep learning networks in predicting 2-year overall sur-

vival of NSCLC patients from CT data. We trained a 3D CNN end to end on patients treated

with radiotherapy, and employed a transfer learning approach for those treated with surgery.

We demonstrated the CNN’s ability to significantly stratify patients into low and high mortal-

ity risk groups, as well as its stability in test–retest and inter-reader variability scenarios. In

addition to benchmarking against feature engineering methods, we also highlighted regions

with the largest contributions to the captured prognostic signatures, both within and beyond

the tumor volume. Finally, our preliminary genomic association studies suggested correlations

between deep learning features and cell cycle and transcriptional processes.

This effort builds upon a body of deep learning applications in medical imaging that has

emerged since the unprecedented superior performance of CNNs in recent image classifica-

tion competitions [55]. Few deep learning studies to date have explored prognostication, with

most addressing other tasks including segmentation, detection, and malignancy classification

[17]. While feature definition is automated in these deep learning approaches, radiomics has

primarily relied on the extraction, selection, and subsequent classification of predefined fea-

tures using other machine learning methods including shallow neural networks, random for-

ests, and support vector machines among others [15]. These methods have found applications

in the prognostication of nasopharyngeal carcinoma in MRI [56], pulmonary adenocarcinoma

in CT [57], and early-stage NSCLC in positron emission tomography (PET)/CT [58] to name

a few. Consequently, in this study, we benchmarked the deep learning networks against ran-

dom forest models built on engineered features, with the performance of the random forest

models being within previously observed ranges [10]. These models exhibited an inferior per-

formance when compared to the deep learning networks, although this difference was only sig-

nificant for surgery patients. These results may be due to the higher levels of abstraction

inherent in deep learning features over their engineered counterparts. Additionally, and in

terms of input formats, engineered features were extracted exclusively from within tumor

annotations. Deep learning inputs, however, were comprised of 3D cubes allowing the net-

work to consider tumor-surrounding tissue. This effect is magnified in the smaller tumors

treated with surgery relative to their larger radiotherapy counterparts, potentially explaining

the significance of the surgery results. Surgery patients are often excluded from engineered

radiomics studies [59–61], where no prognostic signal has been detected, with the cited rea-

soning being the lack of rationale in predicting a tumor response based on its phenotype if it is

resected. Our results hint at the potential utility of deep learning networks in stratifying this

specific patient group.

We also explored models built on a set of clinical features, including age, sex, and TNM

stage. These models performed poorly in both the radiotherapy and surgery datasets, poten-

tially due to the limited features available and common to all 6 datasets. Imaging features com-

monly used in the clinic, namely tumor volume and maximum diameter, performed relatively

well on the radiotherapy datasets, but rather poorly on the surgery datasets, as has previously

been demonstrated [62]. Both models were outperformed by deep learning approaches,
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although the difference was only significant for the surgery datasets. Further studies are needed

to investigate the prognostic relationship between these features and deep learning features for

radiotherapy patients, especially given the well-established relationship between tumor volume

and survival in this group [63]. These results also hint at the prognostic superiority of deep

learning features for surgery patients.

Our efforts to identify salient regions within images through activation mapping hint at the

significance of tumor-surrounding tissue in patient stratification. This aligns with efforts that

showcase the prognostic value of tumor location [64] as well as the importance of understand-

ing the interactions between tumors and their surroundings as a means for effective cancer

prevention and care [65].

Finally, our preliminary genomic association study showcases correlations between the

deep learning network predictions and cell cycling, transcriptional, and other DNA replication

processes, such as DNA repair or damage response. This suggests that deep learning features

may be driven by underlying molecular processes mostly related to proliferation of cells and

hence progression of tumors. Moreover, nearly all significantly enriched biological processes

had a negative enrichment score, indicating an inverse relationship to the survival predictions.

This suggests that the gene expression present in cell proliferating pathways tends to be down-

regulated, with higher network scores indicating a higher survival probability. As associations

between engineered imaging features and biological pathways have already been established

[14,66], our study extends these associations to deep learning.

Strengths of this study include the relatively large—in cancer imaging terms—set of 1,194

NSCLC patients with training, tuning, and testing on independent datasets. The datasets were

heterogeneous in terms of imaging acquisition parameters, clinical stage, and management,

thus reflecting clinical reality. This suggests that deep learning methods may eventually be suf-

ficiently robust and generalizable for practical application in clinical care. In addition to being

a non-invasive and cost-effective routine medical test [67,68], CT imaging provides a relatively

stable radiodensity metric standardized across equipment vendors and imaging protocols

compared to other imaging modalities (e.g., MRI and PET). In comparison to engineered

radiomic methods that require slice-by-slice tumor annotations—a time consuming and

expensive process that is highly prone to inter-reader variability—our approach may yield

higher throughput as it only requires a single-click seed point placement roughly within the

center of the tumor volume. The 2-year survival endpoint utilized here is a relevant survival

cutoff for NSCLC patients and one that has been previously used in prognostication efforts

[69–71]. Our study hints at the utility of transfer learning within medical imaging and across

treatment types, a finding that is also strengthened through benchmarking against end-to-end

training of the surgery training dataset (S6 Fig).

Several limitations should also be noted. By design, the retrospective nature of this study

hindered the ability to gauge how and where such a tool can potentially be integrated into the

clinical workflow. Consequently, the prognostic knowledge distilled into the deep learning

networks is based on earlier treatment options and protocols, and may not be adequately posi-

tioned to infer a prognostic signature for a patient treated with more modern means. The

opaqueness of deep learning networks is another limitation. Feature definition, extraction, and

selection in these methods—a major source of variability in engineered radiomics [15]—are all

automated and occur implicitly. This comes at an expensive cost: interpretability. Conse-

quently, these black-box-like networks are very difficult to debug, isolate the reason behind

certain outcomes, and predict when and where failures will happen. Without a strong theoreti-

cal backing [72], deep learning features are nameless, and the imaging characteristics they

measure are highly obscure. This ambiguity is in sharp contrast to the expert-based well-

defined engineered features, and is often exacerbated in prognostication problems where the
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only means of validation is long-term mortality follow-up through prospective studies. Addi-

tionally, a better understanding of the network hyper-parameter space is needed, potentially

provided by using multiple tuning datasets within the discovery phase and prior to the final

test phase. Another limitation lies in the input data space. Despite the aforementioned dataset

heterogeneity, CT stability, and test–retest and inter-reader variability studies performed

herein, the networks’ sensitivity to other variations in clinical parameters and image acquisi-

tion parameters, including tube current, noise index levels, and reconstruction-specific param-

eters among others, has not been explored. Finally, as the survival times used in this study are

overall as opposed to being cancer-specific, they may be influenced by external factors and

introduce uncertainty into the problem.

Given the fixed input size of the deep learning networks used in this study, future research

directions include exploring classification network architectures that accept inputs of simulta-

neous multi-scale resolutions [73] or variable sizes [74]—an approach common to fully convo-

lutional networks used in image segmentation. Inputs of varying scales can potentially allow

for combining the large tumors in radiotherapy patients with their relatively smaller counter-

parts in surgery patients into one prognostic network whilst maintaining robustness against

such variation. In terms of interpretability, training neural networks with disentangled hidden

layer representations is an active area of research [75]. While our activation mapping studies

offer a qualitative measure of network attention, a more quantitative visualization and diagno-

sis of network representations is needed, especially with applications in the medical space.

Additionally, a safeguard against neural networks’ blind spots is required in addressing our

weak understanding of their susceptibility to adversarial attacks [76], and more specifically the

sensitivity of medical images to certain reported counterintuitive properties of CNNs [77].

Finally, recent advances in imaging genomics [78] motivate further explorations beyond our

preliminary GSEA study. When rigorously evaluated in future prospective studies, deep-learn-

ing-based prognostic signatures could highlight the specific biological states of tumorigenesis

exhibited by a given patient, and thus enable more targeted therapy applications that exploit

specific biological traits.

The development of prognostic biomarkers for NSCLC patients is an active area of

research, where tumor staging information is augmented with radiographic, genetic, molecu-

lar, and protein-based evidence [79,80]. The lack of a truly prognostic clinical gold standard

hinders the ability to accurately benchmark these biomarkers and further stresses the need for

prospective validation. While TNM staging is often utilized in the clinic as the primary means

for NSCLC prognostication and treatment selection, it is mainly intended as a discrete mea-

sure of tumor extent and a clinical communication tool, in addition to being simple and static

by design. Conversely, quantitative imaging features inferred through deep learning are con-

tinuous and high-dimensional, and may be used to augment the higher level, coarser stratifica-

tion provided by TNM staging. After considering the aforementioned limitations, a prognostic

imaging tool may allow the transition to a finer classification enabling the identification of

appropriate treatment plans on the individual patient level. One potential application for such

transition may be in managing early-stage NSCLC patients, for whom surgery represents a

therapeutic mainstay albeit having high recurrence risks [7]. Adjuvant chemotherapy is often

administered as a means of reducing these risks [81,82]. While T and N stage are known to be

associated with recurrence in these patients [83], we find that patients with similar clinical

characteristics can exhibit wide variations in the incidence of recurrence [84] and survival

[85]. A finer classification within the same stage may allow for identifying low and high mor-

tality risk patients. Accordingly, low-risk patients may be spared the adverse physical and men-

tal effects as well as associated costs of adjuvant chemotherapy, and, conversely, more

stringent post-treatment surveillance of those at high risk may be planned. Additionally, a
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more detailed stratification could potentially inform surgical approaches and techniques,

empower high-risk patients with the choice of adjuvant therapy modalities that best fit their

desired lifestyles, and identify long-term beneficiaries from such therapy [86].

Deep learning algorithms that learn from experience offer access to unprecedented states of

intelligence that, in some cases, match human intelligence. Beyond imaging, deep learning’s

multimodal nature [87] promises the integration of multiple parallel streams of information

spanning genomics, pathology, electronic health records, social media, and many other modal-

ities into powerful integrated diagnostic systems [88]. Despite numerous roadblocks including

the need for standardized data collection methods, evaluation criteria, prospective validation,

and reporting protocols [89], the greatest anticipated clinical impact of these algorithms will

be within precision medicine. This emerging approach allows for early diagnosis and custom-

ized patient-specific treatments, thus delivering the appropriate medical care to the right

patient at the right time [90]. While medical imaging has always provided an individual assess-

ment of ailments, AI algorithms based on imaging biomarkers promise to accurately stratify

patients and enable new research avenues for personalized healthcare.
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S1 Checklist. Strengthening the Reporting of Observational Studies in Epidemiology

(STROBE) checklist.
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S1 Fig. Distribution of tumor bounding box dimensions in the radiotherapy training data-

set HarvardRT. This distribution is based on ground truth tumor annotations and was used

to determine and optimize the input size to the CNN. An input size of 50 × 50 × 50 mm was

found to be optimum as it gave the best performance on the tuning dataset Radboud. Around

60% of all tumors are fully contained within this input cube, and the remaining tumors are

cropped. While a larger input cube would allow for more context, it could potentially include

non-predictive features such as bone tissue. Conversely, a smaller input cube would offer very

little context, if any, and crop a large number of tumors.

(EPS)

S2 Fig. Benchmarking deep learning networks against engineered and clinical models. This

figure compares the prognostic performance of deep learning networks with random forest

models. The benchmarking is based on predicting overall 2-year survival. The deep learning

networks are used for reference with performance at AUC = 0.70 (95% CI 0.63–0.78,

p = 1.13 × 10−07) and AUC = 0.71 (95% CI 0.60–0.82, p = 3.02 × 10−04) for the radiotherapy

and surgery datasets, respectively. The random forest models are built on clinical parameters

(age, sex, and TNM stage) and engineered features. This is in addition to tumor volume and

maximum diameter models. Clinical data: Models built on clinical parameters returned

AUC = 0.55 (95% CI 0.47–0.64, p = 0.21) and AUC = 0.58 (95% CI 0.39–0.77, p = 0.4) for the

radiotherapy and surgery datasets, respectively. These models performed significantly worse

than deep learning networks as demonstrated by permutation tests (N = 1,000) on the radio-

therapy (p = 1 × 10−06) and surgery (p = 0.02) datasets. These results were confirmed with the

meta p-value (p = 0.003). Engineered features: Models built on engineered features returned

AUC = 0.66 (95% CI 0.58–0.75, p = 1.91 × 10−04) and AUC = 0.58 (95% CI 0.44–0.75,

p = 0.275) for the radiotherapy and surgery datasets, respectively. As concluded using permu-

tation tests (N = 1,000), these results were not significantly worse than those of the radiother-

apy deep learning network (p = 0.132) but were significantly worse than those of the surgery

deep learning network (p = 0.035). These results were confirmed with a meta p-value test
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(p = 0.06). Volume: Tumor volume returned AUC = 0.64 (95% CI 0.56–0.73, p = 6.18 × 10−04)

and AUC = 0.51 (95% CI 0.37–0.66, p = 0.85) for the radiotherapy and surgery datasets,

respectively. As demonstrated by permutation tests (N = 1,000), tumor volume did not per-

form significantly worse than deep learning networks on the radiotherapy dataset (p = 0.056)

but performed significantly worse on the surgery dataset (p = 0.004). These results were con-

firmed with the meta p-value (p = 7.60 × 10−05). Maximum diameter: Maximum diameter

returned AUC = 0.63 (95% CI 0.55–0.71, p = 2.15 × 10−03) and AUC = 0.50 (95% CI 0.35–0.66,

p = 0.94) for the radiotherapy and surgery datasets, respectively. Maximum diameter did not

perform significantly worse than deep learning networks as demonstrated by permutation

tests (N = 1,000) on the radiotherapy dataset (p = 0.051) but performed significantly worse on

the surgery dataset (p = 0.002). These results were confirmed with the meta p-value

(p = 7.47 × 10−05).

(EPS)

S3 Fig. Stability against inter-reader variations. To simulate human readers annotating

tumor centers with some variability, we translated the input seed point in 3D space. (A) Trans-

lation distances along X, Y, and Z are drawn separately from a binomial distribution with

probabilities based on a normal distribution (σ = 4). Translations are limited to a 30 × 30 × 30

mm cubic region surrounding the seed point. Here, we demonstrate this distribution over 2

axes only—actual translation occurred in 3 axes. The translation simulation is repeated 50

times. (B) Distribution of AUCs across the 50 runs.

(EPS)

S4 Fig. Effects of tumor annotation information on prognostic power. The AUC plot illus-

trates the prognostic power of 3 different models as tested on the radiotherapy test dataset

Maastro (n = 211). The first deep learning network, where the tumor volume is masked by giv-

ing regions beyond the tumor the value of air (−1,000 HU), is shown in green (AUC = 0.63).

The random forest model based on engineered features, where tumor volume is completely

masked, is shown in orange (AUC = 0.66). The second deep learning network, where the

tumor volume is unmasked (Fig 3A), is shown in blue (AUC = 0.70).

(EPS)

S5 Fig. Global gene set expression patterns—MUMC dataset. The deep learning network

predictions on the surgery tuning dataset MUMC were linked to global gene expression pat-

terns using a pre-ranked gene set enrichment analysis (GSEA). Negative and positive enrich-

ments are shown in red and blue, respectively. The top 10 enrichments in each category are

highlighted. See S2 File for full ranking and associated enrichment scores.

(EPS)

S6 Fig. Benchmarking the effects of transfer learning—M-SPORE dataset. This plot illus-

trates the prognostic power of 3 different methodologies as tested on the surgery test dataset

M-SPORE (n = 97). The first result (AUC = 0.71), shown in blue, represents the fine-tuned

network with weights initialized from the radiotherapy network (Fig 3C). The second result

(AUC = 0.56), shown in orange, represents a randomly initialized network trained end to end

on the surgery training dataset Moffitt, utilizing the same hyper-parameters in the radiother-

apy network (Methods). The third result (AUC = 0.48), shown in green, represents the radio-

therapy network used as is (without fine-tuning any of its layers).

(EPS)

S1 File. Gene set enrichment analysis (GSEA) for Moffitt dataset.

(XLSX)
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S2 File. Gene set enrichment analysis (GSEA) for MUMC dataset.

(XLSX)

S1 Table. Dataset breakdown. Table showing the 7 datasets used in this study: 3 radiotherapy

datasets, 3 surgery datasets, and 1 stability assessment dataset. Only patients with NSCLC and

stages I through III were selected. For Kaplan–Meier curves and genomic association studies,

all patients with survival follow-up were used. For deep learning and engineered feature stud-

ies, only patients with 2-year survival follow-up were used.

(EPS)

S2 Table. Univariate Cox model results. Test results from univariate Cox models exploring

the relationship between clinical factors and survival for both the radiotherapy and surgery

patient groups. Deep learning was based on the median split from the respective tuning data-

sets. The same median split is used in the Kaplan–Meier curves (Fig 3B and 3D).

(EPS)

S1 Text. Dataset information.

(DOCX)
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