
AI IN BRIEF

The clinical translation of artificial intelligence for medical 
image analysis faces many challenges (1). Critical among 

these are data quality and curation, which represent dif-
ficult, labor-intensive, and largely manual processes con-
ducted by clinical experts such as radiologists and radia-
tion oncologists (2). The characterization of image-specific 
parameters relies on metadata tags from the Digital Im-
aging and Communications in Medicine (DICOM) stan-
dard, which was designed as a clinical protocol and not 
for downstream computational analysis (3). Furthermore, 
certain types of metadata are input manually by scanner 
operators and are notoriously poorly documented and er-
ror prone (4–6). One such parameter is the administration 
of intravenous contrast material (5,6).

The presence or absence of intravenous contrast mate-
rial has large ramifications for computational imaging model 
performance and is essential knowledge for imaging analy-
ses (7–9). Currently, the only reliable way to detect contrast 
enhancement on a scan is through manual review by clini-
cal experts, which is time-consuming and often impractical. 
With the growing interest in using large datasets to develop 
computational models, there is a need for automated tools 
that can detect intravenous contrast enhancement with high 
fidelity. Several conventional computer vision methods, 

including a hybrid discriminative–generative model (5) and 
a multiclass LogitBoost classifier (6), have been previously 
adopted for contrast enhancement detection with adequate 
performance, although these models were not externally 
validated and require region localization steps prior to con-
trast enhancement prediction, which may limit generaliz-
ability. Recently, deep learning has demonstrated tremen-
dous promise for medical imaging classification (10). There 
have been two prior studies investigating deep learning for 
contrast-phase detection, one for abdominal CT (11) and 
one for the kidney (12). Both achieved promising perfor-
mance on internal test sets. To our knowledge, there exist no 
models for the detection of intravenous contrast enhance-
ment on CT scans that have been externally validated. We 
hypothesized that a deep learning model implementing con-
volutional neural networks (CNNs) could be developed and 
externally validated to reliably and accurately detect intrave-
nous contrast enhancement on CT scans.

Materials and Methods

Study Design and Datasets
This study was conducted in accordance with the Dec-
laration of Helsinki guidelines and received approval 
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Identifying the presence of intravenous contrast material on CT scans is an important component of data curation for medical imaging–based 
artificial intelligence model development and deployment. Use of intravenous contrast material is often poorly documented in imaging meta-
data, necessitating impractical manual annotation by clinician experts. Authors developed a convolutional neural network (CNN)–based deep 
learning platform to identify intravenous contrast enhancement on CT scans. For model development and validation, authors used six inde-
pendent datasets of head and neck (HN) and chest CT scans, totaling 133 480 axial two-dimensional sections from 1979 scans, which were 
manually annotated by clinical experts. Five CNN models were trained first on HN scans for contrast enhancement detection. Model perfor-
mances were evaluated at the patient level on a holdout set and external test set. Models were then fine-tuned on chest CT data and externally 
validated. This study found that Digital Imaging and Communications in Medicine metadata tags for intravenous contrast material were miss-
ing or erroneous for 1496 scans (75.6%). An EfficientNetB4-based model showed the best performance, with areas under the curve (AUCs) of 
0.996 and 1.0 in HN holdout (n = 216) and external (n = 595) sets, respectively, and AUCs of 1.0 and 0.980 in the chest holdout (n = 53) and 
external (n = 402) sets, respectively. This automated, scan-to-prediction platform is highly accurate at CT contrast enhancement detection and 
may be helpful for artificial intelligence model development and clinical application.
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Model Development, Training, and Validation
Five CNN models were investigated: one simple CNN model 
(Fig E2 [supplement]); three representative, published deep 
CNN models that have been top performers in classifications 
of large imaging datasets (ResNet101V2 [17], InceptionV3 
[18], and EfficientNetB4 [19]); and a transfer learning ap-
proach based on ResNet101V2 with pretraining weights on 
ImageNet (20) (architecture details are found in Appendix E1 
[supplement]).

After data preprocessing, HN scans from three patient 
cohorts (cohorts 1–3) were shuffled and randomly split into 
70:30 for model training (n = 504 patients and 33 264 im-
ages) and internal validation (n = 216 patients and 14 256 
images; Fig E1 [supplement]). The data partition was strati-
fied by intravenous contrast enhancement. Scans from cohort 
4 (n = 595 patients and 39 270 images) were used for the 
independent external test. Models were first trained and vali-
dated on the image level. Each CNN model was trained for 
up to 100 epochs on the training dataset and validated on 
the validation set. Models were constructed and trained by 
using TensorFlow 2.0 frameworks in Python version 3.8 on 
a Titan RTX graphics processing unit (NVIDIA) (Appendix 
E1 [supplement]).

To determine whether a model largely based on HN CT 
scans could generalize to chest CT, 80% of the cohort 5 chest 
CT dataset (n = 209 patients and 14 840 images) was used 
to fine-tune the HN model, and the remaining data (n = 53 
patients and 3710 images) were used for internal validation. A 
separate cohort 6 dataset (n = 402 patients and 28 140 images) 
was used for the external test.

Model Performance and Statistical Analysis
The Pearson x2 test and the Kruskal-Wallis H test were per-
formed to test the statistically significant differences among 
training, validation, and test datasets. Model performance 
at the patient level was primarily evaluated by using the 
patient probability score, calculated by averaging the prob-
ability scores of all the images of each scan (Fig 1). A value 
of .5 was used as the probability threshold to determine the 
model prediction class (contrast vs noncontrast) at both the 
image level and the patient level. Receiver operating char-
acteristic analysis and area under the curve (AUC) analysis 
were adopted to assess model discrimination of intravenous 
contrast enhancement. Sensitivity and specificity values were 
calculated by using the optimal cutoff point with the Youden 
index. Precision-recall curves and F1 scores were calculated to 
provide information complementary to the receiver operat-
ing characteristic curve. The 95% CIs were calculated on the 
basis of results from more than 10 000 bootstrapped itera-
tions. Statistical metrics and curves were calculated by using 
Scikit-learn packages in Python. The overall study workflow 
is found in Figure 1. 

All source code and the model can be found at https://
github.com/AIM-Harvard/DeepContrast. National Lung 
Screening Trial data including raw CT images may be re-
quested from The Cancer Image Archive (https://www.

from the local institutional review board. A waiver of con-
sent was obtained from the institutional review board prior 
to research initiation as a result of using public datasets or 
conducting a retrospective study. Data from five institutions 
and one national clinical trial from 2001 through 2015 were 
included (Fig E1 [supplement]). The head and neck (HN) 
cancer dataset consists of four publicly available, de-iden-
tified patient cohorts, each downloaded and curated from 
The Cancer Imaging Archive, as follows: cohort 1 (n = 558) 
(13); cohort 2 (n = 101) and cohort 3 (n = 61) (14); and co-
hort 4 (n = 603) (15). The lung cancer dataset includes two 
patient cohorts, as follows: cohort 5 (n = 262) and cohort 6 
(n = 402), which were derived from a national clinical trial 
(16). These subsets represent all scans that passed the initial 
quality control of DICOM metadata. Scans that excluded 
the HN portions (n = 3) and whole-body scans (n = 6) were 
excluded from analyses. Data from all patients (n = 1979) 
in this study have been used in previous publications, yet 
none of these studies have focused on intravenous contrast 
enhancement detection. CT scanning parameters are found 
in Appendix E1 (supplement). 

Image Review and Annotations
All CT images were manually reviewed and annotated at the 
image axial-section level and the scan level for intravenous 
contrast material presence by a radiation oncologist (J.M.Q.), 
with 4 years of clinical experience (Fig E5 [supplement]), and 
then were further reviewed by a board-certified radiation on-
cologist with 7 years of clinical experience (B.H.K.) to con-
firm. CT image preprocessing steps are found in Appendix 
E1 (supplement).

Abbreviations
AUC = area under the curve, CNN = convolutional neural 
network, DICOM = Digital Imaging and Communications in 
Medicine, HN = head and neck

Summary
Authors developed and externally validated a deep learning model 
that accurately detects intravenous contrast enhancement on head 
and neck CT scans and chest CT scans efficiently and with a nearly 
perfect performance.

Key Points
 n We used 1979 head and neck (HN) and chest CT scans from mul-

tiple institutions to develop and validate a deep learning model to 
detect intravenous contrast enhancement.

 n An EfficientNetB4-based model yielded areas under the curve 
(AUCs) of 0.996 in the internal validation set (n = 216) and 1.0 
in the external test set (n = 595) for HN scans; by using transfer 
learning, the model was retrained to detect contrast enhancement 
on chest scans, yielding an AUC of 1.0 for the internal validation 
set (n = 53) and an AUC of 0.980 for the external test set (n = 
402).

Keywords
CT, Head and Neck, Supervised Learning, Transfer Learning, Con-
volutional Neural Network (CNN), Machine Learning Algorithms, 
Contrast Material

http://radiology-ai.rsna.org
https://github.com/AIM-Harvard/DeepContrast
https://github.com/AIM-Harvard/DeepContrast
https://www.cancerimagingarchive.net


Radiology: Artificial Intelligence Volume 4: Number 3—2022 n radiology-ai.rsna.org 3

Ye et al

Results

Patient and CT Scan Characteristics
The HN patient cohort consisted of 1315 patients (Table E7 
[supplement]). Manual contrast annotation took 7.6 clini-
cian hours for the HN scans (n = 1315), and 798 (60.7%) 

cancerimagingarchive.net). Although raw CT imaging data 
cannot be shared, all measured results to replicate the sta-
tistical analysis are shared at the GitHub webpage: https://
github.com/AIM-Harvard/DeepContrast. Furthermore, we 
include test samples from a publicly available dataset with 
deep learning and expert reader annotations. 

Figure 1: Workflow of deep neural networks (DNNs) for contrast enhancement detections. (A) All of the head and neck (HN) cancer CT scans were first co-
registered to each other. The scans were then cropped to include only HN portions and exclude most background areas. Two-dimensional image sections were extracted 
from each scan and stacked together before being converted to NumPy arrays. (B) NumPy arrays with corresponding labels of each image section were fed into DNNs 
for model development and validation. We tested multiple published two-dimensional DNNs, including ResNet101V2, EfficientNetB4, InceptionV3, and a simple con-
volutional neural network (CNN). The models and prediction results were saved. (C) Image-level model performances were evaluated directly from model predictions. 
Patient-level model performances were then calculated by averaging the probability scores of each image section from each patient. (D) Chest CT scans went through the 
same imaging preprocessing before being input for training. We used a portion of lung images to fine-tune the saved models from HN datasets and applied other portions 
of lung images to validate the model performances at both the image level and the patient level. AUC = area under the curve.

http://radiology-ai.rsna.org
https://www.cancerimagingarchive.net
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EfficientNetB4 took 2.1 hours to analyze all HN scans (n = 
1315 scans, n = 86 790 axial sections) and 1.1 hours to analyze 
all chest scans (n = 664 scans, n = 46 690 axial sections). Er-
ror analysis indicated that faint contrast, artifacts, and dense 
vessels could cause false-positive predictions or false-negative 
predictions with the model (Fig E6 [supplement]).

Gradient-weighted Class Activation Maps for Model 
Interpretability
Qualitative analysis of gradient-weighted class activation heat-
maps demonstrated that regions of importance were centered 
around the central blood vessels of the neck and chest (Fig 3).

Discussion
We developed a CNN-based deep learning platform for au-
tomated intravenous contrast enhancement detection on CT 
scans that demonstrated nearly perfect classification perfor-
mance on several large datasets from a variety of institutions, 
clinical settings, and scanner types. With fine-tuning on small 
datasets, an intravenous contrast enhancement detection model 
developed for one anatomic site (HN) could be successfully 
applied to another region (chest). Data curation and quality 
assessment, including intravenous contrast enhancement con-
firmation, are extremely time- and resource-intensive manual 
processes. Similar to prior studies (7–9), this study found that 
intravenous contrast enhancement annotation from DICOM 
clinical metadata was often poorly documented and unreliable, 
with more than 70% of scans in our study missing or contain-
ing an erroneous contrast material status. Our model was more 
efficient than an expert clinician on contrast enhancement de-
tection. It provides a usable tool that can be incorporated into 
research and clinical settings, obviating time-intensive manual 
annotation and review. Researchers conducting automated im-
aging classification and segmentation studies will find this plat-
form useful in curating and performing quality assurance on 
their studies, saving a substantial amount of time and manual 
effort on annotation. Integrating this platform into the radiol-
ogy workflow could help stratify contrast-enhanced and un-
enhanced CT scans and aid in the accurate reporting of study 
techniques and protocols. The platform could also be applied 
to clinical use cases, such as the identification of scans with 

scans were labeled as contrast enhanced. There were 491 
scans (67.8%) documented with dental artifact among 724 
patients coming from cohorts 1, 2, and 3 (Table E8 [supple-
ment]). DICOM metadata for contrast material information 
(tags entered by technologists) was missing or erroneous in 
808 scans (61.4%). The lung cancer patient cohort consisted 
of 664 chest scans (Table E9 [supplement]). Manual review 
required 6.1 hours of clinician time, and 197 scans (29.7%) 
were labeled as contrast enhanced. DICOM metadata for in-
travenous contrast material was missing for all the chest CT 
scans. Representative scans with contrast and without con-
trast enhancement can be found in Figure E5 (supplement).

Model Performance on HN and Chest CT Scans
For HN scans, all five models yielded excellent results, with pa-
tient-level AUCs greater than 0.98 and F1 scores greater than 
0.96 on the internal holdout validation sets and external test 
sets at the patient level (Tables E10, E12–E15 [supplement]). 
EfficientNetB4 (Table, Fig 2) was selected as the most favor-
able model because it had the highest combined patient-level 
AUC and F1 score (AUC, 0.996; F1 score, 0.991) and because 
it has fewer parameters than ResNet101V2. On evaluation of 
performance metrics on the external test set, EfficientNetB4 
yielded perfect patient-level classification performance, with an 
AUC of 1.0 (95% CI: 1.0, 1.0), a sensitivity of 100% (95% 
CI: 100%, 100%), a specificity of 100% (95% CI: 100%, 
100%), and an F1 score of 1.0 for the patient-level prediction. 
EfficientNetB4 confusion matrices showed excellent agree-
ment (Fig E3 [supplement]). Compared with artificial intel-
ligence, the available metadata yielded an AUC of 0.185 and 
an AUC of 0.572 for intravenous contrast enhancement detec-
tion in the internal validation set and the external test set, re-
spectively, with significant discordance indicated by confusion 
matrices (Fig E4 [supplement]). With model fine-tuning, the 
EfficientNetB4 model demonstrated an AUC of 1 (95% CI: 
1.0, 1.0) and an AUC of 0.980 (95% CI: 0.980, 0.981) for the 
internal validation set and the external test set, respectively, at 
the patient level (Table, Fig 2). EfficientNetB4 still showed the 
best overall model performance among the five CNN models 
(Tables E11–E15 [supplement]). Including the image prepro-
cessing, data loading, and prediction, the pipeline employing 

Classification Performance of EfficientNetB4 Model on HN CT Scans and Lung CT Scans

Scan Type Validation Type Evaluation Level AUC Sensitivity (%) Specificity (%) F1 Score

HN CT Internal validation Image level (n = 33 264) 0.988 (0.988, 0.988) 95.9 (95.9, 96.0) 96.6 (96.6, 96.7) 0.964
Patient level (n = 216) 0.996 (0.996, 0.996) 98.9 (98.8, 98.9) 99.9 (99.8, 99.9) 0.991

External test Image level (n = 39 270) 0.976 (0.976, 0.976) 95.1 (95.1, 95.1) 97.5 (97.5, 97.6) 0.970
Patient level (n = 595) 1 (1,1) 100 (100, 100) 100 (100, 100) 0.999

Lung CT Internal validation Image level (n = 3710) 0.998 (0.998, 0.998) 96.0 (95.9, 96.0) 99.6 (99.5, 99.6) 0.973
Patient level (n = 53) 1 (1,1) 100 (100, 100) 100 (100, 100) 1

External test Image level (n = 28 140) 0.948 (0.948, 0.949) 85.8 (85.6, 85.9) 91.4 (91.3, 91.5) 0.821
Patient level (n = 402) 0.980 (0.980, 0.981) 96.9 (96.8, 97.0) 95.9 (95.8, 96.1) 0.923

Note.—Data in parentheses are 95% CIs. AUC = area under the curve, HN = head and neck.

http://radiology-ai.rsna.org
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institutions and our datasets being limited to HN scans and 
chest scans with a single phase of contrast enhancement and a 
known cancer diagnosis. We recommend that future users of the 
pipeline conduct small, local tests on their institutional scans 
prior to implementation at scale.

retained intravenous contrast material from prior outside hos-
pital imaging during stroke workup, which would have lower 
sensitivity for acute stroke evaluation.

Limitations of this study include the possibility of uncap-
tured confounders within our datasets that vary from other 

Figure 2: Receiver operating characteristic (ROC) curves and precision-recall (PR) curves calculated with the EfficientNetB4 model at both the image level and the pa-
tient level for (A) the head and neck (HN) cancer internal validation set (n = 216 patients and 33 264 images), (B) the HN cancer external test set (n = 595 patients and 
39 270 images), (C) the lung cancer internal validation set (n = 53 patients and 3710 images), and (D) the lung cancer external test set (n = 402 patients and 28140 im-
ages). All six ROC curves showed high areas under the curve (AUCs), indicating strong sensitivity and specificity in detecting these contrast enhancements at both the image 
level and the patient level. The PR curve of the lung CT external test set at the image level showed a slightly lower AUC than those of the other PR curves.

http://radiology-ai.rsna.org
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Figure 3: Gradient-based class activation maps (Grad-CAM) from the EfficientNetB4 model. Six representative scans from patients with head and neck cancer (cases 
1–3) and patients with lung cancer (cases 4–6) with five different image sections shown. The last convolutional layer in the model was used for the generation of class acti-
vation maps. Test input images are shown with overlaid activation maps, in which red colors highlight regions with a higher contribution and blue colors represent areas with 
a lower weight value.

http://radiology-ai.rsna.org
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In conclusion, we developed—and made publicly avail-
able—a CNN-based deep learning model that accurately de-
tects intravenous contrast enhancement on HN and chest CT 
scans across multiple institutions with nearly perfect perfor-
mance, enabling scan-to-prediction automated contrast en-
hancement detection.
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