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Abstract 

Tilings are constructs of repeated shapes covering a surface, common in both manmade 

and natural structures, but in particular are a defining characteristic of shark and ray 

skeletons. In these fishes, cartilaginous skeletal elements are wrapped in a surface 

tessellation, comprised of polygonal mineralized tiles linked by flexible joints, an 

arrangement believed to provide both stiffness and flexibility. The aim of this research is to 

use two-dimensional analytical models to evaluate the mechanical performance of stingray 

skeleton-inspired tessellations, as a function of their material and structural parameters. To 

calculate the effective modulus of modeled composites, we subdivided tiles and their 

surrounding joint material into simple shapes, for which mechanical properties (i.e. effective 

modulus) could be estimated using a modification of traditional Rule of Mixtures equations, 

that either assume uniform strain (Voigt) or uniform stress (Reuss) across a loaded 

composite material. The properties of joints (thickness, Young’s modulus) and tiles (shape, 
area and Young’s modulus) were then altered, and the effects of these tessellation 
parameters on the effective modulus of whole tessellations were observed. We show that 

for all examined tile shapes (triangle, square and hexagon) composite stiffness increased 

as the width of the joints was decreased and/or the stiffness of the tiles was increased; this 

supports hypotheses that the narrow joints and high tile to joint stiffness ratio in shark and 

ray cartilage optimize composite tissue stiffness. Our models also indicate that, for simple, 

uniaxial loading, square tessellations are least sensitive and hexagon tessellations most 

sensitive to changes in model parameters, indicating that hexagon tessellations are the 

most “tunable” to specific mechanical properties. Our models provide useful estimates for 
the tensile and compressive properties of 2d tiled composites under uniaxial loading. These 

results lay groundwork for future studies into more complex (e.g. biological) loading 

scenarios and three dimensional structural parameters of biological tilings, while also 

providing insight into the mechanical roles of tessellations in general and improving the 

design of bioinspired materials.  
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1. Introduction 
The tiling of surfaces with repeated geometric elements is a common structural motif in 

biological tissues and one that transcends phylogeny. Structural tilings have evolved 

independently in multiple systems and at a variety of size scales: from the micron-scale 

plates in the layers of nacre in mollusc shells (Barthelat and Zhu, 2011), to the sub-

millimeter mineralized tiles (tesserae) sheathing the cartilages of sharks and rays (Seidel et 

al., 2016), to the macroscopic plates in the body armors of boxfish (Yang et al., 2015) and 

turtle shells (Chen et al., 2015; Krauss et al., 2009) as shown in Figure 1a. The mechanical 

characteristics of tiled natural composites are typically impressive amalgamations of those 

of their mineralized and organic component parts, resulting in natural armors that can be 

both lightweight and puncture resistant, but also flexible and tough (Chen et al., 2015; 

Krauss et al., 2009; Liu et al., 2010; Liu et al., 2014; Martini and Barthelat, 2016; Rudykh et 

al., 2015; Yang et al., 2013; Yang et al., 2012). The shapes and materials of the tiling 

subunits, their spatial arrangement, and their physical interactions control composite 

functional properties, guiding deformation and hindering damage propagation (Krauss et al., 

2009; Liu et al., 2010; Vernerey and Barthelat, 2010; Yang et al., 2015). Analytical and 

experimental models of suture behavior, for instance, show that simple adjustments to the 

geometry and/or attachment areas of sutural teeth can be used to tune the mechanical 

properties (e.g. stiffness, strength, toughness), deformation or failure behaviors of a 

structured composite (Krauss et al., 2009; Li et al., 2013; Lin et al., 2014). 

  

Figure 1: a. Examples of natural tilings, none of which are true tessellations due to 

overlapping (mollusc nacre) or interdigitating (turtle shell, boxfish scute) morphologies. b. 

Polygonal and square tessellations found in stingray cartilage. Organism and tissue images 

are compiled from a variety of species: a. Turbo caniculatus (mollusc shell), Haliotis 

rufescens (nacre); Phrynops geoffroanus (turtle shell); Ostracion rhinorhynchos (boxfish 

and scute inset; MCZ4454), Lactoria cornuta (interdigitations). b. Myliobatis freminvillei 

(stingray; USNM204770), Myliobatis californica (jaws; MCZ886), Aetobatus narinari (square 

tessellation), Leucoraja erinacea (polygonal tessellation).  

The surface tiling of the skeleton of sharks and rays (elasmobranch fishes) has been 

recognized for over a century as a diagnostic character of all living members of this group, 

but the functional significance of this feature remains unclear. The tiled layer of 

elasmobranch cartilage, like most natural tilings, is comprised of hard inclusions/tiles 

(tesserae; Figure 1b) joined by unmineralized collagen fibers (Fig. 2c; see also Seidel et al., 

2016). However, elasmobranch tesserae lack the interdigitations found in many other 

biological tilings, such as those seen in turtle osteoderms or boxfish scutes (Figure 1a) 

(Chen et al., 2015; Krauss et al., 2009; Yang et al., 2015). Furthermore, unlike the dermal 

scales of fishes, armadillo and some mammals, arrays of tesserae lack appreciable gaps or 

overlaps, and so can be considered “true tessellations” (Bruet et al., 2008; Chen et al., 

2015; Wang et al., 2016; Yang et al., 2012). Elasmobranch tesserae also represent an 

intermediate size class of biological tiles, being typically hundreds of microns in size, an 

order of magnitude larger than mollusc nacre platelets and at least an order of magnitude 

smaller than most scales and osteoderms (Chen et al., 2015; Olson et al., 2012). The 



tessellation of the elasmobranch skeleton is believed to manage stress distribution in a way 

that can minimize damage to the cartilage and also provide both flexibility and stiffness 

(Fratzl et al., 2016; Liu et al., 2010; Liu et al., 2014), the latter being somewhat 

counterintuitive considering the lack of obvious interlocking features between tesserae. The 

correlation between the structural and material aspects of tesserae and the mechanical 

properties of the skeleton at a larger scale remain undemonstrated. In particular, although 

elasmobranch tessellation is apparently largely comprised of hexagonal tiles (Dean and 

Schaefer, 2005; Dean et al., 2016; Seidel et al., 2016), other shapes are possible (Figure 

1b); however, the role of tile shape in the mechanics of the tessellated composite (i.e. at the 

level of the skeletal tissue) has never been investigated. 

In the current paper, our objectives are to analytically model biologically-inspired tessellated 

composites constructed with different tile types (triangle, square and hexagon) to observe 

the effects of (1) tile shape, (2) joint/tile size and (3) joint/tile material properties on the 

mechanical behavior (specifically, the effective stiffness) of the composite material 

(variables shown in Figure 2c). Our results establish a baseline for future analyses of 

tessellations with more complicated (e.g. biologically relevant) morphologies (e.g. 2.5 and 

3D tessellations) and loading conditions (e.g. bending, shear , off-axis and multi-axial 

loading). The results presented in this study improve our understandings of the functional 

significance of the tesseral morphologies observed in elasmobranch skeletons, while also 

framing form-function laws for engineered tiled composites.  

2. Methods 
2.1 Modified Rule of Mixtures model 

To estimate the mechanical characteristics of our tessellated composites, we modify 

traditional Rule of Mixtures methods, which allow calculation of the contributions of 

constituent phases to the net stiffness of a composite. These methods permit the modeling 

of different materials arranged either in parallel (Voigt iso-strain model) or in series (Reuss 

iso-stress model), taking into account their volume fractions (VF) and stiffnesses (E1 and 

E2) (Bayuk et al., 2008). Geometrical interpretations of the Voigt and Reuss models are 

shown in Figure 2a. 

 

Figure 2: a. Rule of Mixtures: Reuss and Voigt models. b. Orientation of model with respect 

to direction of load and the effect on joint material Young’s modulus and composite effective 
modulus (modified Rule of Mixtures). c. Structural and material properties of tessellations 

varied in this study, including shape, tile/joint material, and tile area/joint width. d. Modelling 

of the composite with the inspiration derived from Urobatis halleri (see text for explanation); 

the partition of hexagonal tile composite. See the Appendix for full derivations for all three 

tile shapes.  

The classical Rule of Mixtures models assume monolithic constituent materials with no 

anisotropy of material properties, arranged either in series with or perpendicular to loading 

orientation. This assumption is reasonable for calculating the effective modulus of a 

composite where materials are arranged in simple geometries and where loading 

orientation plays no role on a constituent material’s properties.  



The arrangement and morphology of joint material in tessellated cartilage, however, argue 

for a degree of orientation-dependent behavior. Intertesseral joints are comprised of linearly 

arrayed collagen fibers, oriented perpendicular to tesseral edges (Seidel et al., 2016) 

(Figure 2c; see discussion of tesseral ultrastructure below), and given also that our 

investigated tile models possess edges where joint and tile material are neither in perfect 

series nor parallel arrangements relative to load (e.g. Section 1 in Fig. 2c), we employ the 

two following modifications to the traditional Rule of Mixtures models. 

In the first modification, to approximate the mechanical behavior of the intertesseral joint 

material of elasmobranch cartilage (for which no experimental data exist; see Section 2.3 

below), we assume the material properties of the joint material to resemble those of other 

vertebrate fibrous materials. We assume the Young’s modulus of the joint material 

perpendicular to the tesseral edge (E20°, in line with the joint fiber directions) to be 1500 

MPa (the tensile modulus of tendon; Shadwick, 1990), whereas we assume the modulus 

orthogonal to the direction of joint fibers (E290°) to be only 50 MPa (the compressive 

modulus of periodontal ligament; Rees and Jacobsen, 1997). This modification is a matter 

of a simple substitution of E290° for E20° where Voigt (in-parallel) models are used in our 

calculations (Eq.1 below). 

In the second modification, we account for situations where the tile and joint interface is 

oblique to the loading direction (i.e. neither a pure in-series/Reuss nor parallel/Voigt 

arrangement), such as can be seen in the equations for triangle and hexagon composites in 

the Appendix. This is accomplished by the following equation, which exploits the 

Pythagorean trigonometric identity, cos2θ + sin2θ = 1, to scale the relative contributions of 

Voigt and Reuss models according to the angle of rotation (θ) of the composite relative to 
loading direction:   

                              =cos θ     euss model  + sin θ     oigt model                                     

                     cos θ     1       

 1 (1-   ) +     ሺ   ሻ 
  + sin θ    ( 1      +        (1-   )                  (1)      

The equation functions as a pure Reuss model with E20° joint modulus when in series with 

the load (θ =   : sin20°=0, cos290°=1; Fig. 2b, left image) and a Voigt model with joint 

modulus E290° when tissues phases are oriented in parallel with the load (θ =    : 
sin290°=1, cos290°=0; Fig. 2b, right image), with intermediate values of θ resulting in values 
of E that are proportional mixes of the pure models. This equation therefore accounts for 

the effects of both fiber orientation and oblique joint-tile interfaces (i.e. whole model 

orientation) relative to axial loads.  

Our equation is more suited to our modeling goals than Krenchel’s modified Rule of 

Mixtures model (Aspden, 1988; Krenchel, 1964), which modifies a Voigt model to formulate 

the effects of the orientation of stiff fibers within a softer matrix on a composite’s stiffness: 

 composite   cos (θ)    fiber      +  matrix   (1 -   )                                                        

The limitation of Krenchel’s model is that it assumes only the effect of fiber material 

orientation with respect to the Voigt model and so for our purposes could only capture the 

effects of changing joint fiber orientation in an in-parallel loading scenario. 

2.2 Application to tessellation models 



To apply these models to tessellations constructed from arrays of triangular, square and 

hexagonal tiles, we divide each composite unit cell (the tile and half of its surrounding joint 

material) into simple geometric shapes containing tile and joint material for which effective 

modulus can be calculated using Equation 1. The subdivisions of the hexagonal tile are 

shown as an example in Figure 2d. Although we focus on only one composite cell in our 

approach, this provides an estimate of the stiffness of a periodic array of tiles, similar to 

what would be generated in a Finite Element (FE) model employing periodic boundary 

conditions (PBC; see Section 2.5 below). 

The effective modulus of each unit cell portion is then calculated using the modified Rule of 

Mixture equations provided above (Figure 2b), as a function of tile side length (L), tile 

modulus (E1), joint thickness (t) and joint modulus (ranging from E20° to E290°, depending 

on the orientation to the loading direction). The effective modulus of the entire tile-joint 

composite (E) is then determined by combining the contributions of each of the unit cell 

portions, using traditional Voigt/Reuss models, according to their volume fractions relative 

to the whole and whether the subunits are arranged in parallel or series (e.g. Section 1 and 

2 in Fig. 2d are arranged in series). The full calculations and assumptions of these models 

are provided in the Appendix. Using this approach, the effective modulus of the three tiled 

composites (comprised of triangle, square and hexagonal tiles) is evaluated. Alternate 

partitioning of unit cells (i.e. using other lines of division) had little effect on model results 

and only for the thickest joint morphologies for triangle and hexagon unit cells; this was a 

function of the different partitioning schemes altering whether the extreme corners of unit 

cell were assigned as oblique or in-series elements (data and partition schemes are 

provided in the Appendix). 

The basic Voigt and Reuss models are shown in Figure 2a. When calculated using the 

same volume fractions of tile and joint materials as those in our composite models, these 

models act as upper and lower theoretical bounds, respectively, for our data. The 

mechanical behavior of the Voigt model (upper bound) is dictated by the properties of the 

stiffer material (tile = E1), given the assumption that the strains are uniform across the 

composite, due to the two phases of the composite being in parallel. In the Reuss model 

(lower bound), the properties are dominated by the softer material at 0° orientation to the 

load (joint = E20°), due to the in-series orientation of the phases, resulting in uniform 

stresses across the composite. 

 

2.3 Model constraints and biological relevance 

In terms of inputs for our models, information on the structural and material properties of 

tessellated cartilage is limited, with the most information available on tesseral ultrastructure. 

Tesserae in curved regions of shark and ray skeletal elements may have more block-like, 

columnar or spherical morphologies (Dean et al., 2016; Fig. 1 in Liu et al., 2014; Fig. 2 in 

Seidel et al., 2016), but as their interactions with neighboring tesserae are more 3-

dimensional, we derive the following synthesis of tesseral morphology from flat regions of 

the skeleton, where tesserae are more plate-like (e.g. Dean et al., 2016; see Fig. 10 in 

Seidel et al., 2016). Evidence from a variety of species indicates that tesserae can range 

from four- to twelve-sided, but are mostly hexagonal (Dean and Schaefer, 2005; Dean et 

al., 2016; Seidel et al., 2016) and that tesserae in adult animals are typically between ~200-

500µm wide (within the plane of the tesseral mat), with little space between them (Clement, 



1992; Dean et al., 2009; Kemp and Westrin, 1979; Seidel et al., 2016). The intertesseral 

joint space (the region of interaction between two adjacent tesserae) has a complex 

morphology, comprised of regions where neighboring tesserae are in direct contact 

(intertesseral contact zones: ~1-5µm wide; Fig. 2d) and wider gaps filled with linearly 

arrayed collagen fibers (intertesseral fibrous zones: ~20-30µm wide; Fig. 2d) (Seidel et al., 

2016).  

Material property data for tesserae remain scarce and inconsistent. The Young’s modulus 
for intertesseral joint fibers is unexamined, but we will assume it to be similarly anisotropic 

to other vertebrate fibrous tissues (see Section  .1 above). The Young’s modulus for 
hydrated shark and ray mineralized tissue, derived from nanoindentation, has been 

reported to span a massive range from 79 to 4000 MPa (Ferrara et al., 2013; Wroe et al., 

2008). The reason for this measurement variation is unknown, but is likely due largely to 

methodology (sample preparation, indenter size), and also perhaps interspecies differences 

in tesseral shape/properties. Recent data have also shown extensive local variation in 

mineral density within tesserae (Seidel et al., 2016). Correlated measurements of mineral 

density from quantitative backscatter electron imaging and material property data from 

nanoindentation argue that some sub-regions of tesserae may be up to an order of 

magnitude stiffer than the previously reported maximum (up to ~35GPa; R Seidel, pers. 

comm.).   tesseral Young’s modulus in the higher range of reported values (e.g. > 1 GPa) 
is further supported by the comparable properties of other mineralized skeletal tissues (e.g. 

Carter and Hayes, 1977; Currey, 1988), the observations of extremely high mineral 

densities in tesserae (R. Seidel, pers. comm.; Seidel et al., 2016) and the direct relationship 

between mineral density and indentation modulus in calcified cartilage and bone (Gupta et 

al., 2005).  

 

2.4 Visualization and evaluation of data  

Our analytical models were evaluated for E1/E20° from 1.0 (equal tile and joint moduli) to 

25.0 (tile modulus 25x that of joint modulus), and for t/√ , from 0.0 (no joints) to 0.10 (e.g. 

1 % of the square’s side length). These values cover a biologically-relevant range of 

tesseral properties, from the softest to stiffest estimates of tesseral and fiber material 

properties and from the narrowest to widest measurements of intertesseral gaps and 

tesserae (Fig. 2c). For reference, we indicate with a red dot in Figures 3b and 4 our best 

approximation of the properties of the tesserae of round stingray (Urobatis halleri), as this 

species is the most studied in terms of ultrastructure and material properties (e.g. Dean et 

al., 2009; Dean et al., 2016; Seidel et al., 2016; Wroe et al., 2008). 

We generated 2D contour plots for each unit cell shape using compound non-dimensional 

variables that take into account all elements of our effective moduli equations (Figure 3). In 

these plots, the x-axis is the ratio of the stiffness of the tile material relative to the joint 

material (E1/E20°) and the y-axis is the ratio of the thickness of the joint relative to a linear 

measure of tile size (t/√ ), with the “topography” (colored contours) of the graph 
representing the relative effective modulus (REM) of the composite (the stiffness of the 

composite relative to its joint stiffness, E/E20°). Therefore, moving in the positive x-direction 

corresponds to increasingly stiffer tiles (or softer joints) and moving in the positive y-

direction, a thickening of the joints relative to tile dimensions. These unitless ratios allow 



comparison of the effects of both material properties (x-axis) and structural/shape 

parameters (y-axis) on composite mechanical performance (REM).  

The first order parameter controlling mechanical properties of a composite is the volume 

fraction of the components (Hull and Clyne, 1996; Wang et al., 2011), or area fraction (AF) 

of joint and tile material, in the case of our 2D tilings. As we are interested in the role of 

shape and size of tiles with respect to a “biologically relevant” joint layer (i.e. one of a 

particular, measureable thickness) we chose to compare our predictions for fixed values of 

t/√  rather than AF. For comparative purposes, however, we include in the Appendix our 

results (Fig. A.9) plotted with respect to area fraction. As expected the graphs plotted in 

terms of AF show little variation among the three unit shapes, underlining the lesser effect 

of unit cell shape compared with that of area fraction.  

Our chosen y-axis size metric (t/√ ) produced similar results to other descriptors of tile/joint 

geometry, such as ratios of joint thickness (t) to tile length (L) or perimeter (p) (data not 

shown). Given our interest in using a y-axis metric that contains a linear measure of joint 

thickness, we use t/√  because, among possible tile/joint geometry metrics (e.g. t/p, t/L), it 

is most comparable to the area fraction (an important element of the Voigt/Reuss 

equations). Also, as effective modulus calculations for the three unit shapes are most 

similar when tile areas (rather than side lengths or perimeters) are normalized (data not 

shown), the results reported below according to      represent a more stringent series of 

comparisons.  

2.5 Simulation and experimental verification of models 

The three unit cell types can be partitioned in several different ways. To test for consistency 

between methods, we compare the results of two different partitioning schemes (see 

Appendix). 

To verify the efficacy of our analytical models, Finite Element (FE) models representing the 

three tilings were generated in ABAQUS from models built in Rhino computer-aided-design 

(CAD) software with the Grasshopper plug-in. A 1% compressive strain and PBCs were 

applied and the models tested over a range of E1/E2 values for relatively thick joints (t/√  = 
~0.07). The resultant stress-strain curves were used to calculate the models’ composite 
stiffness and those compared to the composite effective stiffnesses estimated by our 

analytical models using the same input parameters. A more detailed description of the 

methods can be found in the Appendix.  

3. Results and discussion 
FEA and analytical calculations showed general agreement in their estimates of composite 

model stiffness as a function of E1/E2 and a given t/√  value (Supplemental  ig. A.10). 

This supports our conjecture that our analytical models of a single tile and its surrounding 

joint material can be used to approximate the behavior of a larger tiled array, in a manner 

similar to FE models employing periodic boundary conditions (see Appendix). Furthermore, 

our results were largely consistent, regardless of the unit cell partitioning scheme used (see 

Appendix, Figures A.7, and A.8). 

All data calculated from the analytical models fall within the range of values depicted in the 

lower bound (Reuss) and upper bound (Voigt) contour plots for their unit cell shape; the 

upper and lower bound contour plots exhibited similar form and magnitude for all unit cell 



shapes, therefore, we show only those plots for the square unit cell as an example in the 

first row of Figure 3. For the lower bound, close to the x-axis, contour lines showed positive 

slopes that gradually decreased and leveled off to roughly horizontal lines at higher x-axis 

values. Such regions of more horizontal contour orientation (i.e. at higher x-axis values) 

indicate a more geometry-sensitive/material-insensitive system, where changes in joint 

thickness (y-axis) have an effect on REM, but changes in joint/tile material properties (x-

axis) have little effect. In contrast, a more vertical arrangement of contours, like those 

fanning out from the y-axis in the upper bound plot, signify a more geometry-

insensitive/material-sensitive system, where material property (x-axis) changes are 

important, but there is little effect of changes in joint thickness (y-axis) on the REM of the 

composite.  

In general, all models showed an increase of composite REM moving clockwise through the 

contour plot (i.e. towards thinner joints and stiffer tiles), however the relative widths of their 

contours became more evenly spaced from square to triangle to hexagon. The three unit 

cell shapes (triangle, square and hexagon) show a continuum in contour plot topography: 

starting with the square’s stacked, asymptoting contours (which resemble those of the lower 

bound), and moving from triangle to hexagon, contour slopes steepen, resulting in the 

hexagon’s contours being more similar in shape to those of the upper bound graph (Fig. 

3A). This argues for the models, from square to triangle to hexagon, behaving increasingly 

as hybrid iso-stress/iso-strain composites and less as pure iso-stress models.  

The variation in shape and spacing of contour lines among the three unit cell shapes is 

indicative of differences among models in the degree to which structural and material 

property changes affect composite performance. For example, the lateral spacing of the 

contour steps reflects the relationship between x-axis and REM values: if REM values 

increase more slowly than x-axis values —as in the upper half of the square tiled array 

graph (Fig. 3A), where contours are comparatively broad— changes in tile modulus have 

limited effect on the composite’s   M (i.e. square is a more material-insensitive unit cell at 

large joint thicknesses). By contrast, when contour lines/REM values match x-axis values 

(i.e. contour lines are vertical and E/E20° = E1/E20°), changes in tile modulus have a direct 

and corresponding effect on the composite’s   M. The more vertically oriented contours of 
the hexagon array graph therefore illustrate that the mechanical behavior of the hexagonal 

array is, on average, controlled to a larger degree by the composite’s material properties.  

In contrast, the vertical spacing of contour steps reflects the relationship between structural 

properties (i.e. joint thickness) and REM values. The tighter vertical spacing of contours on 

the lower right-hand side of all graphs illustrates that arrays become more sensitive to 

changes in joint morphology as tile and joint moduli diverge (i.e. at higher x-axis values). 

The square array’s graph shows the tightest and most horizontal arrangement of contours 

in this region. This indicates that, in comparison with the other unit cells, and for a given 

high tile stiffness (i.e. high x-axis value), changes in joint morphology (vertical movements 

parallel to the y-axis) result in large changes in composite modulus (i.e. the composite is 

very geometry-sensitive). By contrast, hexagons (and to a lesser degree, triangles) are 

more influenced by both changes in geometry and material, a function of their contours’ 
stable positive slopes. The narrowing of comparable graph contours (i.e. those representing 

the same z-value range) from square to triangle to hexagon also represents an increase in 

composite effective stiffness. Hexagons are therefore overall the most efficient shape in 

terms of the transfer of constituent material properties to composite modulus. 



 

Figure 3: Relative Effective Modulus (REM) for all tile shapes, as a function of E1/E2 (x-axis) 

and t/√A (y-axis). The legend for terminology and scale for all graphs is shown in the upper 

left corner; with increasing x-axis values, tiles become stiffer relative to joints, with increasing 

y-axis values, joints are thicker relative to tile size. The lower and upper bounds for the 

square tile are shown in the upper right corner; upper/lower bound graphs for triangle and 

hexagon tiles were similar. A. Contour plots for all shapes (y-axis scale: 0.0-0.1). B. A 

zoomed in view of the contour plot from Figure 3A, to focus on more biologically relevant y-

axis values (0.0 - 0.01). The biologically relevant x- and y-axis values —calculated from the 

structural and material properties of round stingray (U. halleri) tesserae— are marked by a 

red marker. Note that whereas hexagon result in the stiffest composite behavior overall (i.e. 

the REM values are highest for any given x-value), all tile shapes have similar contour 

patterns for the biologically-relevant range in B indicating little effect of unit cell shape on 

REM for thin joints (low y-axis values). 

The maximum y-axis value in Figure 3A represents comparatively thick joints (e.g. up to 

10% of the square tile’s side length), whereas those of the natural tessellated cartilage 
system are quite narrow (~1/500 width of the tile ~0.002L; Seidel et al., 2016). The contour 

plots in Figure 3B present a more biologically relevant y-axis scale, from 0 to 0.01, indicated 

by the horizontal white bars in 3a; x- and y-values representing stingray (U. halleri) cartilage 

are marked with red dots in Figs. 3B and 4. In Figure 3B, all tile shapes exhibit a fanned 

series of nearly vertical lines that, with increasing x-axis values, gradually tilted away from 

the y-axis. These nearly vertical contours signify that, when joints are thin, all models are 

more geometry-insensitive/material-sensitive systems, where material property (x-axis) 

changes are important, but there is little effect of changes in joint thickness (y-axis) on the 

REM of the composite. For very thin joints (i.e. Fig. 3B), the triangle model is slightly softer 

than the square model, a function of the shallower curves of its contours.  

 

Figure 4: Comparison of the contour plots of all tile shapes from Figure 3. Contour lines 

originating from the same x-axis value (a contour line trio) correspond to the same z-axis 

value range (e.g. all lines in the first trio on the far left of 4A indicate REM = 2.5). The 

spread of contour line in a trio reflects the dissimilarity of the topography of the contour 

plots of the three tile shapes: in particular for the upper right portion of A, where joints are 

very thick and tiles are far stiffer than joints, the REM for hexagon is considerably higher 

than that of square. The narrower spread of contour lines in trios in biologically relevant 

range (B) indicates that unit cells exhibit more similar mechanical behavior at small y-axis 

values (e.g. narrow joints). A. Contour lines for all shapes (y-axis scale: 0.0-0.1); compare 

with Figure 3A. B. A zoomed in view of the contour plot lines from Figure 4A, to focus on 

more biologically relevant y-axis values (0.0 - 0.01); compare with Figure 3B. Values for the 

structural and material properties of round stingray (U. halleri) tesserae are marked by a 

black marker.  

The degree of “geometry insensitivity” varies to some degree by shape: moving from 
triangle to square to hexagon the contours gradually incline more towards the left, indicating 

decreased susceptibility to changes in joint thickness (Fig. 4). For values of joint 

morphology measured from stingrays, however, these effects are minimal: from triangle to 

square to hexagon, the REM values only increase 1.45% of their x-axis (i.e. tile stiffness) 



values, from 90.77% to 91.45% to 92.22%. This is further illustrated in Figure 5 in a two-

dimensional graph of REM values for the biologically relevant morphologies (t/√  =  .   ). 
Overall, the similarity of the observed trends and the convergence of comparable contour 

lines near the x-axis of  igure   indicate that the thinner an array’s joints, the less of a role 
tile shape plays in composite stiffness. 

 

Figure 5: Two-dimensional graphical representation of REM for all tile shapes when 

t/sqrt(A)= 0.002 (biologically relevant value, derived from U. halleri tessellated cartilage), 

showing the relationship between tile and composite modulus. The zoomed in pane shows 

the high correspondence of the three unit cells’ lines, indicating similar mechanical behavior 

at small y-axis values (e.g. narrow joints). All shapes fall within their respective upper and 

lower bounds; note that the upper bound lines are nearly overlapping and the lower bound 

for hexagon is hidden beneath the REM line for the triangle array. The region above the 

upper bound lines represents an unrealistic scenario where the composite is stiffer than its 

stiffest constituent (E>E1). 

4. Conclusions 
All examined models show stiffening of the composite when joint widths are minimized 

and/or tile stiffness is maximized. On average, however, the effective modulus of the 

square array is least sensitive and that of the hexagon array most sensitive to changes in 

model parameters. This suggests that square arrays would be less sensitive to 

structural/material variation (e.g. a wide range of E1/E20° values results in the same 

effective modulus, particularly when joints are thick), whereas hexagon tiled arrays would 

be more “tunable”. Square tiled arrays also allow the least return on material investment in 

terms of stiffness, whereas hexagon arrays provide a more optimized solution by 

maximizing the contribution of the harder tile material to the stiffness of the whole 

composite, being at a minimum 70.8% as stiff as their stiffest material for the range of 

values investigated here (as compared with 66.7% for the square unit cell). These 

differences are even more pronounced when other variables of tile shape are held constant 

(e.g. tile length or perimeter, rather than area; data not shown), but global trends among 

unit cell shapes are consistent, with hexagons always out-performing the other shapes in 

terms of composite stiffness. In models of geometric sutural interfaces, where joint 

thickness and volume fraction were held constant, stiffness increased as the length of 

sutural tooth edges in contact with joint material was increased, via addition of extra joint 

material to bond tooth tips to their corresponding troughs or via increases in tooth tip angle 

for teeth with bonded tips (Lin et al., 2014). In contrast, in our models, for a given thickness 

of joint, hexagons —the tile that minimizes perimeter length for a given tile area— 

maximized composite model stiffness, by minimizing joint attachment surface and therefore 

the overall amount of joint material in the tiled composite. These observations on the 

mechanical efficiency of tiled composites are relevant to the laws constraining structuring of 

tiled biological materials, but also to manufacturing perspectives, where specific composite 

mechanical properties are desired. 

The variable behaviors observed for different tile shapes when joints are thick do not apply 

for thin-jointed tile arrays, which converge on similar mechanical behaviors for the uniaxial 

loading regime simulated here. However, based on data showing the mechanical 

anisotropy of cellular solids (Ashby et al., 1995) and co-continuous composites (Wang et 



al., 2011), and given the large angle between the sides of square tiles, we would expect 

that square arrays would be particularly sensitive to variations in loading direction and, in 

biological systems, would only be found in areas with restricted loading orientation. This is 

supported by our observation of square tesserae in specific areas of the jaws of myliobatid 

stingrays (Dean, pers. obs.; Figure 1b), directly beneath the tooth plates used to crush hard 

shelled prey with high, uniaxial bite forces (Kolmann et al., 2015; Summers, 2000).  

Square tesserae are, however, otherwise apparently not common in tessellated cartilage, 

with limited data on shark and ray cartilage tessellations suggesting that hexagons are the 

most common tiling elements (Dean and Schaefer, 2005; Dean et al., 2016). Our data show 

that hexagonal tiles can, under some loading conditions, impart superior mechanical 

properties to composites, in comparison with square and triangle arrays. The effect of tile 

shape may be largely irrelevant in the biological system, however, considering that a recent 

survey of the tessellations of several shark and ray species suggested that intertesseral 

joints may, as a rule, be extremely narrow (Seidel et al., 2016). The predominance of 

hexagonal tiles could also relate to factors besides mechanics, such as biological growth 

mechanisms. For instance, given that tesserae arise from seed mineralization centers and 

grow by mineral accretion at their margins (Dean et al., 2009; Seidel et al., 2016), tesseral 

shape could also be regulated by the initial packing of mineralization seeds and/or variation 

in the local rates and uniformity of mineral deposition as tesserae and skeletal elements 

increase in size. In the latter case, tesserae with more sides could represent more uniform 

radial growth, whereas square tesserae would suggest a simpler biaxial growth pattern.  

Our models provide theoretical groundwork for planned Finite Element simulations of more 

complex 3D tessellation models, but are currently only valid for in-plane, unidirectional 

loading (tension or compression), along the primary “vertical” axes of our unit cell shapes 
and for small resultant strains (see Appendix). Our results therefore give only an estimation 

of the tensile/compressive properties of tiled composites under instantaneous loading 

without, for example, capturing non-linear effects of tile-tile contact on mechanics, which 

may play a fundamental role in the mechanics of tessellated cartilage (Fratzl et al., 2016) 

and should also be very geometry dependent (Li et al., 2013). Our future studies will 

incorporate more detailed investigation through FE simulations and mechanical testing of 

3D printed models, as well as the effects of off-axis loading, including shear and Poisson’s 
ratio effects, to better approximate the features of the biological tilings under study and 

provide insight into tiled composite architectures in general.  
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Appendix  

We apply modified Rule of Mixtures models to tessellations constructed from arrays of 

triangular, square and hexagonal tiles, by dividing each composite unit cell (the tile and its 

surrounding joint material) into simple geometric shapes containing tile and joint material. 

The justifications for these models are discussed in the Methods; we describe and illustrate the 

partitioning of each unit cell shape below. 

Structure  MPa 

 

E1 = Tile Young’s modulus   

35000 MPa 

 Young’s modulus of join  of join  fibers a  0° 
orientation (i.e. in line with load) = E20° 

 

1500 MPa 

 Young’s modulus of join  a  90° orien a ion 
(i.e. perpendicular to load) = E290° 

 

 

50 MPa 

Table 1: Material properties of tile and joint materials. 

 

Triangle 

Figure A.1: Dimensions of triangle composite. 

Length of the tile = L 

Thickness of the joint = t 

Length of the composite = L+2*h1 

h1 = 
  an  0° 

Area of the composite = 
    ሺ     ሻ  

Area of the tile = 
    ሺ ሻ   

Orientation of the fiber material relative to load =   

 

 

 



Partitions 

         

Figure A.2: Partitions in triangle composite. 

Section 1 is marked with red lines whereas Section 2 is marked with a green line. Section 1L 

and Section 1R are mirror images of each other, therefore it is enough to solve the effective 

modulus of just Section 1L, which will have the same effective modulus as Section 1R and as 

the complete Section 1 (combination of Section 1L and Section 1R). 

Computing the effective modulus of Section 1L (Esection1L) 

Area of tile region in Section 1L = 
       ሺ ሻ   

Joint region in the Section 1L is trapezoid. 

Area of joint region marked in red in Section 1L = 
ሺ        ሻ    

Total Area of Section 1L = TA1 

            ሺ ሻ    ሺ        ሻ    
Area fraction of tile region in Section 1L = AF1  

  se  ion             ሺ ሻ         ሺ ሻ    ሺ        ሻ    
 se  ion    os           0°    ሺ ‐  se  ion   ሻ    0°  ሺ  se  ion   ሻ    sin     ሺ     se  ion        °  ሺ ‐  se  ion  ሻሻ        

 

Computing the effective modulus of composite (Ecomposite) 

Total area of composite = TAcomposite  

   om osi e           (   an  0°)      
Total area of Section 1 (L and R combined) = 

    ሺ ሻ     ሺሺ        ሻ   ) 

Area fraction of the composite=       o al area of  e  ion   and     om osi e    
         ሺ ሻ     ሺሺ        ሻ   ሻ         ቀ   an  0°ቁ     

                       Ecomposite = 
 se  ion      0° se  ion   ሺ    se  ion    ሻ    0°   se  ion      



Square 

 

Figure A.3: Dimensions and partitions of square composite. 

Length of the tile = L 

Joint thickness = t 

Length of the composite = L+2*t  rea of   e  om osi e  ሺ     ሻ   rea of   e  ile   ሺ ሻ  

Calculation the effective modulus for Section 1 

 

Figure A.4: Dimensions and partitions of Section 2 in square composite.  rea of  e  ion    ሺ     ሻ   

Area fra  ion of   e  e  ion   ሺ   ሻ   rea of   e  ile rea of  om osi e 

  se  ion        ሺ     ሻ 

 ffe  i e modulus of  e  ion     se  ion                        °   ሺ  ‐    ሻ 

Computing the net effective modulus of the composite 

 rea fra  ion ሺ  ሻ    o al area of  e  ion   o al area of  om osi e     ሺ     ሻሺ     ሻ          
Since Section 1 and Section 2 are in series and since both Section 2 elements (top and bottom 

joints) are composed only of joint material at 0° orientation, the net effective modulus of the 

square composite is:   om osi e               0°            ( -  )   0°  ሺ  ሻ  



Hexagon 

 

Figure A.5: Dimensions of hexagonal composite. 

Length of the tile = L 

Joint thickness = t 

Length of the composite = L+a a   sin 0° 

 rea of   e  om osi e        ሺ  aሻ  

 rea of  ile        ሺ ሻ    = Orientation of the fiber material relative to load 

 

Partitions 

 

Figure A.6: Dimensions of partitions of hexagonal composite. 

Section 1 is marked with red lines, whereas Section 2 is marked with a green line. Similar to 

triangle, Section 1 appears several times in the unit cell in mirrored, identical parts. It is 

enough to solve the effective modulus of the single Section 1 element shown in Figure A.6, 

which equals the effective modulus of all three additional Section 1 elements. 

Effective modulus of Section 1: 

Area of the tile in Section 1 = 
        ሺ ሻ   

Area of the joint in Section 1 = 
ሺ    aሻ    

  se  ion  = 
ሺ rea of  ile in  e  ion  ሻ rea of  ile in  e  ion      rea of join  in  e  ion    

ሺ        ሺ ሻ  ሻሺ        ሺ ሻ     ሺ    aሻ    ሻ 
The effective modulus of the Section 1 is calculated below: 

 se  ion   os          0°   ሺ ‐  se  ion  ሻ    0°  ሺ  se  ion  ሻ    sin    ሺ     se  ion      90° ሺ ‐  se  ion  ሻ 

Calculating area fraction of Section 2: 

Area of the joint in Section 2 = 
ሺ    aሻ    



Total area of all four Section 1 elements = (
     ሺ ሻ       ሺ    aሻ   ) 

Area fraction of the composite =    = 
                         o al area of  om osi e   ሺ     ሺ ሻ       ሺ     ሻ   ሻ     ሺ  aሻ   

 

Effective modulus of the composite  

  om osi e  se  ion      0° se  ion  ሺ ‐   ሻ    0°  ሺ   ሻ  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Alternative partition schemes: 

The three unit cell types can be partitioned in several different ways. We present two schemes 

below, Schemes A and B and compare their results in Figure A.8. We consider Scheme A to be 

the more intuitive and so use it to generate our datasets. 

 

Figure A.7: Partitioning schemes. Regions colored in red indicate corner elements that are 

assigned different properties as a function of the different partitioning schemes. 

 

Comparison of results between partition schemes 

 

Figure A.8: Comparison of contour lines scheme. 

The effective modulus calculations for Schemes A and B are compared with each other by 

overlaying the contour lines of both the schemes over one another (Figure A.8 above). The 

further apart two comparable contour lines are (i.e. when both blue and red lines are visible), 

the more different the results generated by the schemes. It is evident that there is no difference 

in the REM for both the partitioning schemes for biologically relevant values (lower graphs, 

marked in red). Differences are most pronounced for very thick joints for hexagon and triangle 

tiles; this is due to the corner regions in the oblique elements (e.g. Section 1 of triangle and 

hexagon), marked in red in Figure A.7, which can be considered either as pure in-series 

elements (Reuss) or off-axis elements (hybrid Reuss-Voigt; see 2. Methods). 

Effect of area fraction on relative effective modulus of all shapes 

 

Figure A.9: Comparison of relative effective modulus for all shapes with respect to area fraction 

reflecting the REM values for all shapes lie in same contour region. 

  



Verification and Experimental methods 

The verification procedure for the derived analytical equations was performed using finite 

element analysis (FEA). The tiling network is modeled in the CAD software Rhino, using the 

Grasshopper plugin for parameterized modelling. Since the structure of the tiling network is 

complex (e.g. the joints are very thin compared tiles and would require a fine meshing to 

capture their performance), modeling a large tiled network would demand considerable 

computational power and time. We overcame this by using Periodic Boundary Conditions 

(PBC) (Li et al., 2013; Overvelde and Bertoldi, 2014), sets of equations to model large systems 

by breaking them into small parts (representative volume elements RVE; Fig. x) that can be 

repeated periodically over the space to approximate the larger network. Since RVEs are 

identical in terms of structural and material properties, their responses to the acting forces are 

the same.  

 

Figure A.10: Comparison of relative effective modulus (E/E2) between analytical calculations, 

FEA(periodic boundary conditions) and FEA(tiled array) with E1/E2 on x-axis and E/E2 on y-

axis.  

In our models, a 2-dimensional RVE (with biologi ally rele an  mor  ology,        0.00 ሻ 
was modeled for hexagon, square and triangle tilings using Rhino and Grasshopper. RVEs were 

imported into ABAQUS (FEA) software and simulations performed for simple compression 

(1% strain) of the models, with PBCs applied via a readily available PYTHON code (Overvelde 

and Bertoldi, 2014). Models were tested over a range of E1/E2 values (Fig. A.10), from E1/E2 

= 5.0 to 23.3, the biologically relevant tile to joint material stiffness ratio. Each composite model’s s iffness was measured as   e ra io be ween   e a erage s ress ሺ o al Rea  ion  or e 
on the boundary / RVE side length) and the average strain (the 1% imposed to the RVE). A 

uniform joint material property (E20° = 1500 MPa) was used (i.e. with loading orientation 

having no effect on joint modulus), as orientation-dependent material properties are beyond 

the scope of the current paper. Furthermore, since the joints are very thin in the biologically 

relevant morphology (i.e. the joint area fraction is low), the differences with the analytical 

models, where the effect of joint orientation is considered, should be negligible.  

 

 

 

 

 

 

 

 



Summary 

 

Triangle 

 

 

Square 

 

Hexagon 

 

 

Area of the composite 

     ሺ     0.  ሻ  

 

 

 

Area of the composite 

 ሺ     ሻ  

 

  rea of   e  om osi e 

      ሺ   0.  ሻ  

 

 

Area of the tile        

 

 

 

Area of the tile 

    

 

 

Area of the tile           

 

 

Area of the joint 

   ሺ     0.  ሻ   ⁄  

 

 

Area of the joint 

 ሺ     ሻ -    

 

Area of the joint 

     ሺ     0.  ሻ 

 

Perimeter 

 

 

Tile 

 

3*L 

Composite 3*(L+    .  ) 

 

 

Perimeter 

 

 

Tile 

 

4*L 

Composite 4*(L+   ) 

 

 

Perimeter 

 

 

Tile 

 

6*L 

Composite 6*(L+
 0.  ) 

 

 

Area fraction: 

Area of tile/Area of composite 

 ሺ ሻ ሺ     0.  ሻ  

 

 

 

Area fraction: 

Area of tile/Area of composite 

 ሺ ሻ ሺ     ሻ  

 

 

Area fraction: 

Area of tile/Area of composite 

 ሺ ሻ ሺ   0.  ሻ  

 

 

Table A.1: Summary of structural parameters and their formulae for all shapes. 

 

 

 

 

 

 



Figures 

 

Figure 1: a. Examples of natural tilings, none of which are true tessellations due to 

overlapping (mollusc nacre) or interdigitating (turtle shell, boxfish scute) morphologies. b. 

Polygonal and square tessellations found in stingray cartilage. Organism and tissue images 

are compiled from a variety of species: a. Turbo caniculatus (mollusc shell), Haliotis 

rufescens (nacre); Phrynops geoffroanus (turtle shell); Ostracion rhinorhynchos (boxfish 

and scute inset; MCZ4454), Lactoria cornuta (interdigitations). b. Myliobatis freminvillei 

(stingray; USNM204770), Myliobatis californica (jaws; MCZ886), Aetobatus narinari (square 

tessellation), Leucoraja erinacea (polygonal tessellation).  

  



 

Figure 2: a. Rule of Mixtures: Reuss and Voigt models. b. Orientation of model with respect 

to direction of load and the effect on joint material Young’s modulus and composite effective 
modulus (modified Rule of Mixtures). c. Structural and material properties of tessellations 

varied in this study, including shape, tile/joint material, and tile area/joint width. d. Modelling 

of the composite with the inspiration derived from Urobatis halleri (see text for explanation); 

the partition of hexagonal tile composite. See the Appendix for full derivations for all three 

tile shapes.  

 



 

Figure 3: Relative Effective Modulus (REM) for all tile shapes, as a function of E1/E2 (x-axis) 

and t/√A (y-axis). The legend for terminology and scale for all graphs is shown in the upper 

left corner; with increasing x-axis values, tiles become stiffer relative to joints, with increasing 

y-axis values, joints are thicker relative to tile size. The lower and upper bounds for the 

square tile are shown in the upper right corner; upper/lower bound graphs for triangle and 

hexagon tiles were similar. A. Contour plots for all shapes (y-axis scale: 0.0-0.1). B. A 

zoomed in view of the contour plot from Figure 3A, to focus on more biologically relevant y-

axis values (0.0 - 0.01). The biologically relevant x- and y-axis values —calculated from the 

structural and material properties of round stingray (U. halleri) tesserae— are marked by a 

red marker. Note that whereas hexagon result in the stiffest composite behavior overall (i.e. 

the REM values are highest for any given x-value), all tile shapes have similar contour 

patterns for the biologically-relevant range in B indicating little effect of unit cell shape on 

REM for thin joints (low y-axis values). 



 

Figure 4: Comparison of the contour plots of all tile shapes from Figure 3. Contour lines 

originating from the same x-axis value (a contour line trio) correspond to the same z-axis 

value range (e.g. all lines in the first trio on the far left of 4A indicate REM = 2.5). The 

spread of contour line in a trio reflects the dissimilarity of the topography of the contour 

plots of the three tile shapes: in particular for the upper right portion of A, where joints are 

very thick and tiles are far stiffer than joints, the REM for hexagon is considerably higher 

than that of square. The narrower spread of contour lines in trios in biologically relevant 

range (B) indicates that unit cells exhibit more similar mechanical behavior at small y-axis 

values (e.g. narrow joints). A. Contour lines for all shapes (y-axis scale: 0.0-0.1); compare 

with Figure 3A. B. A zoomed in view of the contour plot lines from Figure 4A, to focus on 

more biologically relevant y-axis values (0.0 - 0.01); compare with Figure 3B. Values for the 



structural and material properties of round stingray (U. halleri) tesserae are marked by a 

black marker.  

 

Figure 5: Two-dimensional graphical representation of REM for all tile shapes when 

t/sqrt(A)= 0.002 (biologically relevant value, derived from U. halleri tessellated cartilage), 

showing the relationship between tile and composite modulus. The zoomed in pane shows 

the high correspondence of the three unit cells’ lines, indicating similar mechanical behavior 
at small y-axis values (e.g. narrow joints). All shapes fall within their respective upper and 

lower bounds; note that the upper bound lines are nearly overlapping and the lower bound 

for hexagon is hidden beneath the REM line for the triangle array. The region above the 

upper bound lines represents an unrealistic scenario where the composite is stiffer than its 

stiffest constituent (E>E1). 

 

 



 

Figure A.1: Dimensions of triangle composite. 

 

 

 

Figure A.2: Partitions in triangle composite. 

 



 

 

Figure A.3: Dimensions and partitions of square composite. 

 

 

Figure A.4: Dimensions and partitions of Section 2 in square composite. 



 

Figure A.5: Dimensions of hexagonal composite. 

 

 

Figure A.6: Dimensions of partitions of hexagonal composite. 



 

Figure A.7: Partitioning schemes. Regions colored in red indicate corner elements that are 

assigned different properties as a function of the different partitioning schemes. 

 



 

Figure A.8: Comparison of REM contour lines scheme. The two partition schemes shown in Fig. 

A.7, and on comparison with their REM lines they correlate with each other in the biological 

region of interest. 



 

Figure A.9: Comparison of relative effective modulus for all shapes with respect to area fraction 

reflecting the REM values for all shapes lie in same contour region. 



 

Figure A.10: Comparison of relative effective modulus (E/E2) between analytical calculations, 

FEA (periodic boundary conditions) and FEA (tiled array) with E1/E2 on x-axis and E/E2 on y-

axis.  


