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TensorFlow - MNIST For Beginners
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About this tutorial
Getting Started With TensorFlow The MNIST Data

MNIST For ML Beginners This tutorial is intended for readers who are new to both machine learning and TensorFlow. If you already know what Softmax Regressions
Deep MNIST for Experts MNIST is, and what softmax (multinomial logistic) regression is, you might prefer this faster paced tutorial. Be sure to Implementing the
TensorFlow Mechanics 101 install TensorFlow before starting either tutorial. Regression
tf.contrib.learn Quickstart Training

Building Input Functions with tf.contrib. When one learns how to program, there's a tradition that the first thing you do is print "Hello World." Just like Evaluating Our Model
learn programming has Hello World, machine learning has MNIST.

Logging and Monitoring Basics with tf.

contrib.learn MNIST is a simple computer vision dataset. It consists of images of handwritten digits like these:

TensorBoard: Visualizing Learning
TensorBoard: Embedding Visualization

TensorBoard: Graph Visualization S 0 q /
TensorBoard Histogram Dashboard

It also includes labels for each image, telling us which digit it is. For example, the labels for the above images are 5, 0, 4,
and 1.

In this tutorial, we're going to train a model to look at images and predict what digits they are. Our goal isn't to train a
really elaborate model that achieves state-of-the-art performance - although we'll give you code to do that later! - but
rather to dip a toe into using TensorFlow. As such, we're going to start with a very simple model, called a Softmax
Regression.

The actual code for this tutorial is very short, and all the interesting stuff happens in just three lines. However, it is very

imnartant tn understand the ideas behind it: both how TensorFlow works and the core machine learning concepts.
https://www.tensorflow.org/versions/r1.2/get_started/mnist/beginnersiabout_this_tutorial
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https://www.tensorflow.org/versions/r1.2/get_started/mnist/beginners
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TensorFlow - MNIST For Beginners
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TensorFlow - MNIST For Beginners
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TensorFlow - MNIST For Beginners
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Weight Sharing




Convolutions

input convolution
28x28 filter/kernel



Convolutions

g

| |

input convolution

28x28 filter/kernel
3x3



Convolutions

7

| |

input convolution

28x28 filter/kernel
3x3



Convolutions

7

| | |

input convolution feature map
28x28 filter/kernel 26x26

3x3



Convolutions

7

| | |

input convolution feature map
28x28 filter/kernel 26x26

3x3



Convolutions

7

| | |

input convolution feature map
28x28 filter/kernel 26x26

3x3



Convolutions
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https:/fujjwalkarn.me/2016/08/1 1 /intuitive-explanation-convnets/
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CNN specifics



Neocognitron

K Ky

Fig. 2. Schematic diagram illustrating the Fig. 3. Illustration showing the input interconnections to the cells
interconnections between layers in the within a single cell-plane
neocognitron

Kunihiko Fukushima

Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position
Biological Cybernetics - 1980



LeNet-5

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28
32x32 S2: f. maps
6@14x14

|
‘ ‘ FuIIconAection | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recog-

nition. Each plane is a feature map, i.e. a set of units whose weights are constrained
to be identical.

Yann LeCun, Patrick Haffner, Léon Bottou & Yoshua Bengio

C1 s2 CVS S4 C5
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Fig. 4. Examples of unusual, distorted, and noisy characters correctly recognized by

LeNet-5. The grey-level of the output label represents the penalty (lighter for higher
penalties).

Object Recognition with Gradient Based Learning
Shape, Contour and Grouping in Computer Vision - 1999



AlexNet

138 204¢ 7o4g \dense

dense dense
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Max 128 Max pooling
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204¢ 2048

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.

Alex Krizhevsky, Ilya Suiskever & Geoffrey E. Hinton

ImageNet Classification with Deep Convolutional Neural Networks
Advances in Neural Information Processing Systems - 2012



AlexNet @ ImageNet
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pooling pooling

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.

https:/ldevblogs. nvidia. com/mocha-jl-deep-learning-julia/
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Hyperparameters

32,64, 128 ...

https:/ics. nyu.edu/ - fergus/tutorials/deep_learning_cvpri2/



Hyperparameters

11x11, 5x5, 3x3 ...




Hyperparameters

padding

pad the input image”? # of pixels to shift the filter




Hyperparameters

padding no
stride 2

https:/lgithub.com/vdumounlin/conv_arithmetic



Hyperparameters

padding no padding yes
stride 2 stride 2

https:/lgithub.com/vdumounlin/conv_arithmetic



Hyperparameters

padding no padding yes padding yes
stride 2 stride 2 stride 1

https:/lgithub.com/vdumounlin/conv_arithmetic
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https:/fwww.embedded-vision.com/platinum-members/cadencelembedded-vision-trainingldocuments/pages/nenralnetworksimagerecognition#3



Pooling
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Dingjun Yu, Hanli Wang, Peiqiv Chen & Zhihua Wei

Mixed Pooling for Convolutional Neural Networks
International Conference on Rough Sets and Knowledge Technology - 2014
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Dingjun Yu, Hanli Wang, Peiqiv Chen & Zhihua Wei

Mixed Pooling for Convolutional Neural Networks
International Conference on Rough Sets and Knowledge Technology - 2014



Convolutional Neural Networks
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Data Augmentation

rotate
translate
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https:/igithub.com/alejulimgang



Number of Parameters

4 padding 1
' stride 2




Number of Parameters
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Number of Parameters

-1 padding 1
' stride 2

filter feature map

without weight sharing (8*8*1 + 1) * (14*14) & 20 = 254,800



Number of Parameters

-1 padding 1
' stride 2

filter feature map

without weight sharing (8*8*1 + 1) * (14*14) & 20 = 254,800
with weight sharing (8*8*1 + 1) . 20 = 1,300



Memory Management

INPUT: [224x224x3] memory: 224*224*3=150K  weights: 0

CONV3-64: [224x224x64] memory: 224*224*64=3.2M  weights: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M  weights: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K  weights: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K  weights: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3¥3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3¥3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K  weights: 0

CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3¥3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3¥3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3¥3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K  weights: 0

CONV3-512: [14x14x512] memory: 14°14*512=100K weights: (3¥3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14°14*512=100K weights: (3¥3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3¥3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K weights: 0

FC: [1x1x4096] memory: 4096 weights: 7*7*512%4096 = 102,760,448
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB
TOTAL params: 138M parameters

Karen Simonyan & Andrew Zisserman

Very Deep Convolutional Networks for Large-Scale Image Recognition
International Conference on Rough Sets and Knowledge Technology - 2014



Memory Management

INPUT: [224x224x3] memory: 224*224*3=150K  weights: 0

CONV3-64: [224x224x64] memory: 224*224*64=3.2M  weights: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M  weights: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K  weights: 0 -
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728 :
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K  weights: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3¥3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3¥3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3%3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K  weights: 0

CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3¥3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28%28*512=400K weights: (3¥3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K  weights: 0

CONV3-512: [14x14x512] memory: 14°14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14°14*512=100K weights: (3¥3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3¥3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K weights: 0

FC: [1x1x4096] memory: 4096 weights: 7*7*51274096 = 102,760,448

FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216 &

FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000 Nvidia GeForce GTX 980 4GB

TOTAL memory: 24M * 4 bytes ~= 93MB
TOTAL params: 138M parameters

Karen Simonyan & Andrew Zisserman

Very Deep Convolutional Networks for Large-Scale Image Recognition
International Conference on Rough Sets and Knowledge Technology - 2014



Visualizing Attention
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Visualizing and Understanding Convolutional Networks

European Conference on Computer Vision - 2014



Visualizing Attention
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Class activation maps of top 5 predictions

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva & Antonio Torralba
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Learning Deep Features for Discriminative Localization
Conference on Computer Vision and Pattern Recognition - 2016



CNN flavors



1x1 Convolutions

CONVOLUT 10N = LINERR CLASIFIR
OVER A PRTCH

HMin1 -DEEP NETWORK
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1x1 Convolutions
Udacity Deep Learning Nanodegree Program



Inception Module

Filter
concatenation

T
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(a) Inception module, naive version

Christian Szegedy, Wei Liu, Yangqing Jia, et al.

Figure 2: Inception module
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(b) Inception module with dimension reductions

Going Deeper with Convolutions (GoogleNet/Inception)

CVPR - 2015




Capsule Networks

https:/imedium.com/ai% C2%B3-theory-practice-businessiunderstanding-hintons-capsule-nerworks-part-i-intuition-64655941 1596



Capsule Networks

https:/imedium.com/ai% C2%B3-theory-practice-businessiunderstanding-hintons-capsule-nerworks-part-i-intuition-64655941 1596



Capsule Networks
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“The pooling operation used in convolutional neural networks is a big mistake and the fact
that it works so well is a disaster.” - Geoffrey Hinton

https:/imedium.com/ai% C2%B3-theory-practice-businessiunderstanding-hintons-capsule-nerworks-part-i-intuition-64655941 1596



Capsule Networks

Figure 1: A simple CapsNet with 3 layers. This model gives comparable results to deep convolutional
networks (such as [ 1). The length of the activity vector of each capsule
in DigitCaps layer indicates presence of an instance of each class and is used to calculate the
classification loss. W; is a weight matrix between each u;,7 € (1,32 x 6 x 6) in PrimaryCapsules
and v;,7 € (1, 10).

16
-
ReLU Convl # 256 DigitCaps
" 1L, I
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. Y~ 2 )
20 s

>

Sara Sabour, Nicholas Frosst & Geoffrey Hinton

Dynamic Routing Between Capsules
Conference on Neural Information Processing Systems - 2017



ResNets
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Deep Residual Learning for Image Recognition
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Building block

Skip
connection

LT 7

Residual
module

(a) Conventional 3-block residual network (b) Unraveled view of (a)

Figure 1: Residual Networks are conventionally shown as (a), which is a natural representation of
Equation (1). When we expand this formulation to Equation (6), we obtain an unraveled view of a
3-block residual network (b). Circular nodes represent additions. From this view, it is apparent that
residual networks have O(2™) implicit paths connecting input and output and that adding a block
doubles the number of paths.

Andreas Veit, Michael Wilber & Serge Belongie

Residual Networks Behave Like Ensembles of Relatively Shallow Networks

Conference on Computer Vision and Pattern Recognition - 2016



Fully Convolutional Networks

forward /inference

backward/learning

21
Figure 1. Fully convolutional networks can efficiently learn to

make dense predictions for per-pixel tasks like semantic segmen-
tation.

Jonathan Long, Evan Shelhamer & Trevor Darrell

32x upsampled
image convl pooll conv2 pool2 conv3 pool3 conv4 poold convh pool5  conv6-7 prediction (FCN-32s)

16x upsampled

2 T
— x’% prediction (FCN-16s)
8x upsampled
4x conv7 prediction (FCN-8s)
2x pool4 | || |
pool3 | \ { |

Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-
stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the pool4 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic
information. Third row (FCN-8s): Additional predictions from pool3, at stride 8, provide further precision.

Fully Convolutional Networks for Semantic Segmentation

CVPR - 2015



Fully Convolutional Networks
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

Olaf Ronneberger, Philipp Fischer & Thomas Brox

U-Net: Convolutional Networks for Biomedical Image Segmentation
MICCAI - 2015



Fully Convolutional Networks
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

Olaf Ronneberger, Philipp Fischer & Thomas Brox

U-Net: Convolutional Networks for Biomedical Image Segmentation
MICCAI - 2015



Fully Convolutional Networks
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Fausto Milletari, Nassir Navab & Seyed-Abmad Ahmadi

V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
https://arxiv.org/abs/1606.04797



Generative Adversarial Networks (GAN)
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Generative Adversarial Networks (GAN)
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p,, from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of &. The upward arrows show how the mapping ¢ = G(z) imposes the non-uniform distribution p, on
transformed samples. G contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: p, is similar to pyaa and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =

#%. (c) After an update to G, gradient of DD has guided G(z) to flow to regions that are more likely
ata g
to be classified as data. (d) After several steps of training, if G’ and D have enough capacity, they will reach a

point at which both cannot improve because py; = pdaa. The discriminator is unable to differentiate between

the two distributions, i.e. D(x) = 3.

lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville & Yoshua Bengio

Generative Adversarial Nets

Advances in Neural Information Processing Systems - 2014



Deep Convolutional Generative Adversarial Networks (DCGAN)

—t—
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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Alec Radford, Luke Metz & Soumith Chintala

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
International Conference on Learning Representations - 2016



Variational Autoencoders
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Transfer Learning

Year CNN Developed Place Top-5 error No. of
by rate parameters
1998 LeNet(B) Yann LeCun 60 thousand
et al
2012 AlexNet(7) Alex 1st 15.3% 60 million
Krizhevsky.
Geoffrey
Hinton, llya
Sutskever
2013 ZFNet() Matthew 1st 14.8%
Zeiler and
Rob Fergus
2014 GoogLeNet(1 | Google 1st 6.67% 4 million
9)
2014 VGG Net(16) | Simonyan, 2nd 7.3% 138 million
Zisserman
2015 ResNet(152) | Kaiming He | 1st 3.6%

https:/imedium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df>
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Online Resources
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Reproducibility
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Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, et al.

A Survey on Deep Learning in Medical Image Analysis
Medical Image Analysis - 2017



Deep Learning

Keras %DMJ
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Reproducibility

Code break

In a survey of 400 artificial intelligence papers pre-
sented at major conferences, just 6% included code
for the papers’ algorithms. Some 30% included test
data, whereas 54% included pseudocode, a limited
summary of an algorithm.
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Papers including variable (%)
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Code Testdata Pseudocode

Matthew Hutson

Artificial Intelligence Faces Reproducibility Crisis
Science - 2018



Existing Solutions

_; houseroad Rename ZFNet to ZFNet-512 (#36) Latest commit 3be4824 11 hours ago
Bl bvlc_alexnet Update bvlc_alexnet model 4 months ago
i bvlc_googlenet Add the value_info json for the remaining of the models except style ... 3 months ago
B bvic_reference_caffenet Add the value_info json for the remaining of the models except style ... 3 months ago
| bvlc_reference_rcnn_ilsvre13 Add the value_infojson for the remaining of the models except style ... 3 months ago
B densenet121 Add DenseNet-121 model 4 months ago
I detectron Add Detectron e2e_faster_rcnn_R-50-C4_2x model 3 months ago
I inception_v1 Add Inception models 4 months ago
| inception_v2 Add Inception models 4 months ago
Bl resnet50 Add ResNet-50 model 4 months ago
Bl scripts Add Detectron e2e_faster_rcnn_R-50-C4_2x model 3 months ago
B squeezenet Correct SqueezeNet value_info to 227x227 3 months ago
BB style_transfer Add other style transfer models 4 months ago
i vgg19 Add VGG models 4 months ago
B zfnet512 Rename ZFNet to ZFNet-512 (#36) 11 hours ago
& .gitattributes Remove squeezenet-specific lines from .gitattributes. 4 months ago
[E) LICENSE Add Apache 2.0 license 4 months ago
E) README.md Update README to describe subdirectory access 3 months ago

Yangqing Jia, Evan Shelbamer, Jeff Donahue, et al.

Caffe: Convolutional Architecture for Fast Feature Embedding
arxiv.org/abs/1408.5093



Existing Solutions
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NiftyNet: a deep-learning platform for medical imaging
GOMPUTER VISION  GONVOLUTIONAL NEURAL NETWORKS (GNN)  DEEP LEARNING (OL) [ ]

DLTK: State of the Art Reference Implementations for Deep Learning on Medical

Images
~ AN open source library for deep learning on medical images, built on TensorFlow &

Model ZOO comPUTER ViSION  DEEP LEARNING (DL MACHINE LEARKING

Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs
GENERATIVE  SIGNAL PROCESSING
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xisting Medical Imaging Solutions
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portable tool agnostic

Abhmed Hosny, Michael Schwier, Andriy Y Fedorov and Hugo JWL Aerts

Modelhub: Plug & Predict Solutions for Reproducible Al Research
modelhub.ai



How it Works

test drive

framework ——— for everyone
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explore the model in your broswer

frontend (optional)
web interface + notebook
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contributor pre-/post-processing, sample | ®
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published models for researchers
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API
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deploy modelhub dockers and make API
calls for model information & predictions

Ahmed Hosny, Michael Schwier, Andriy Y Fedorov and Hugo JWL Aerts

Modelhub: Plug & Predict Solutions for Reproducible Al Research

modelhub.ai



For Contributors

increasing
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modelhub engine

model runtime

ubuntu

Ahmed Hosny, Michael Schwier, Andriy Y Fedorov and Hugo JWL Aerts

1 build docker image
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Modelhub: Plug & Predict Solutions for Reproducible Al Research

modelhub.ai
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Community Outreach

M/ MODELHUB

info@ modelhub.ai

co-authorship through model contributions

Abhmed Hosny, Michael Schwier, Andriy Y Fedorov and Hugo JWL Aerts

Modelhub: Plug & Predict Solutions for Reproducible Al Research
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