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Cancer is a Big Deal

Figure 1. Number of deaths due to heart disease and cancer: United States, 1950-2014
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Centers for Disease Control and Prevention

Changes in the Leading Cause of Death: Recent Patterns in Heart Disease and Cancer Mortality

https://www.cdc.gov/nchs/data/databriefs/db254.pdf




Intra-tumor Heterogeneity

Subclone 1
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Early Logic and Statistical Pattern Recognition in Medicine

3 July 1959, Volume 130, Number 3366 SCI ENCE

Reasoning Foundations of

Medical Diagnosis

Symbolic logic, probability, and value theory
aid our understanding of how physicians reason.

Robert S. Ledley and Lee B. Lusted

The purpose of this article is to ana-
lyze the complicated reasoning processes
inherent in medical diagnosis. The im-
portance of this problem has received
recent emphasis by the increasing inters
est in the use of elecironic computers as
an aid to medical diagnostic processes
{4, 2). Before computers <an be used
effectively for such purposes, however,
we need to know more about how the
physician makes a medical diagnosis.

1f a physician is asked, “How do yon
make a medical dingnessss bismcalan
tion of the process
“First, I obtain the {
patient’s history, ph:
and laboratory tests.

may be of first-ordd
other data of less im|
make a differential
the diseases which
vensonably rescnable.
disease after another from the list until
it becomes apparent that the case can be
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fitted into a definite disease category, or
that it may be one of several possible dis-
eases, or else that its exact nature cannot
be determined.” This, cbviowly, & a
greadly simplified explanaton of the
process of diagnoss, for the physician
might also comment that after seeing a
paticnt he often has a “feeling about the
case” This “feeling,” although hard 1o
explain, may be 2 summation of his im-
pressions concerning the way the data
seem to fit together, the patient’s relia.

be integrated by the physician with a
large store of possible diseases. It is
widely believed that errors in differen-
tial diagnosis result more frequendy
from errors of omission than from ether
saurces. For instance, conceming such er-
rors of omission, Glendening and Hash-
inger (3) say: “How to guard against
incompleteness 1 do not know. But T do
know that, in my judgment, the most
brilliant diagnosticians of my acquaint-

ance are the ones who do remember and
consider the most possi

Computers are especially suited (o
help the physician collect and process
clinical information and remind him of
diagnoses which he may have over-
losked, In many cases computers may be
as simple as a set of handwsorted cards,
whereas in other cases the use af 2 large-
scale digital electronic computer may be
indicated. There are ather ways in which
computers may serve the physician, and
some of these are suggested in this pay
For example, medical students might
find whe computer an important aid in
learning the methods of differential di-
agnosis. But to use the compuier thus
wae must understand how the physician
makes a medical diagnosis. This, then,
brings us 1o the subject of our investiga.
tion: the reasoning foundations of med-
ieal diagnosis and treatment,

Medical diagnosis invelves processes
that can be systematically analyzed, as
well as those characierired as “iman:
gible.” For instance, the reasoning foun-
dations of medical diagnostic procedurce
are precisely analyzable and can be sepa-
rated from certain considered intangible
judgmenss and value decisions. Such a
separation has several important advan-
rages. First, systematization of the rea.

“increasing interest in the use of
A= electronic computers as aid to
medical diagnostic processes”

ean be developed. However, a consider-
ation of foundations is always essential
as the fint step in the dovelopment of
practical applications.

The reasoning feundations of medical
diagnosis and treatment can be mast
precisely investigated and described in
terms of certain mathematical tech-
niques. Before material to illustrate
these techniques was selected, many of
the New England Journal of Medicine
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The Coding of Roentgen Images for
Computer Analysis as Applied to Lung Cancer'
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Artificial vs. Human Intelligence

Performance

Early efforts

Current state

Future outlook

Al with subhuman
performance is
occasionally used in
commercial expert
systems with varying
degrees of utility

Narrow task-specific Al has
started to match and, in
some instances, exceed
human performance in tasks
including conversational
speech recognition, driving
vehicles, playing Go and
classifying skin cancer

General Al exceeds human
performance and reasoning
in complex tasks, including
writing best-selling novels
and performing surgery.
Human intelligence
improves as we learn

from Al

Human

Al

Time

Abmed Hosny , Chintan Parmar, John Quackenbush , Lawrence H Schwartz and Hugo JWL Aerts

Artificial Intelligence in Radiology

Nature Reviews Cancer - 2018




Artificial Intelligence Impact Areas within Oncology Imaging
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Prognosis

Because statistics are based on large groups of people, they cannot be
used to predict exactly what will happen to you. |27 e[y CRERe[1i{=I (=171 &
Treatments and how people respond to treatment can differ greatly.
Also, it takes years to see the benefit of new treatments and ways of
finding cancer. So, the statistics your doctor uses to make a prognosis
may not be based on treatments being used today.

Still, your doctor may tell you that you have a good prognosis if statistics
suggest that your cancer is likely to respond well to treatment. Or, he may
tell you that you have a poor prognosis if the cancer is harder to control.
Whatever your doctor tells you, keep in mind that a prognosis is an
=l [FTo21 1o G [VIEET) YOur doctor cannot be certain how it will go for you.

National Institutes of Health - National Cancer Institute

Understanding Cancer Prognosis
https://www.cancer.gov/about-cancer/diagnosis-staging/prognosis



Tumor Phenotyping in 2014
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Decoding Tumour Phenotype by Noninvasive Imaging using a Quantitative Radiomics Approach
Nature Communications - 2014
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Deep Learning for Automated Quantification of Radiographic Tumor Phenotypes

Under Review



Analytical Setup
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Benchmarking
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Activation Mapping

INPUT IMAGE WITH ANNOTATIONS ACTIVATION HEATMAPS
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State of the Art
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State of the Art
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Flying Blind

Resources to facilitate an informed conversation about Al

Understand the larger context of our efforts

Effectively measure and communicate progress
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Al Index Landscape
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Audience
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Findings - Statistics
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Findings - Statistics
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Findings - Reproducibility

others (7)
6.48%

unet (2)
1.85%
holistically_nested_edge_detection (2)
1.85%

bvlc_googlelenet (3)

2.78%
alexnet(3)
2.78%

bvic_fully_convolutional nets (4)
3.7%

bvlc_lenet (4)
3.7%

no code basis (53)

deep_residual_networks (4) 49.1%

3.7%

bvlc_caffenct (5)
4.63%

bvlc_alexnet (10)
9.26%

vgg_very_deep_convnets (11)
10.2%

Abmed Hosny and Hugo JWL Aerts

Medical Artificial Intelligence Index

medicalindex.ai



Findings - Reproducibility

others (7)
6.48%

unet (2)
1.85%
holistically_nested_edge_detection (2)
1.85%

bvlc_googlelenet (3)

2.78%
alexnet(3)
2.78%

bvic_fully_convolutional nets (4)
3.7%

bvlc_lenet (4)
3.7%

no code basis (53)

deep_residual_networks (4) 49.1%

3.7%

bvlc_caffenct (5)
4.63%

bvlc_alexnet (10)
9.26%

vgg_very_deep_convnets (11)
10.2%

Abmed Hosny and Hugo JWL Aerts

code made public(13)
12%

code unavailable (95)
88%

Medical Artificial Intelligence Index

medicalindex.ai



Findings - Reproducibility

others (7)
6.48%

unet (2)
1.85%
holistically_nested_edge_detection (2)
1.85%

bvlc_googlelenet (3)

2.78%
alexnet(3)
2.78%

bvic_fully_convolutional nets (4)
3.7%

bvlc_lenet (4)
3.7%

no code basis (53)

deep_residual_networks (4) 49.1%

3.7%

bvlc_caffenct (5)
4.63%

bvlc_alexnet (10)
9.26%

vgg_very_deep_convnets (11)
10.2%

Abmed Hosny and Hugo JWL Aerts

code made public(13)
12%

code unavailable (95)
88%

data made public (4)

data made availeble upon request (14)
12.7%

data unavailable (45)
40.9%

3.64%

used public data (47)
42.7%

Medical Artificial Intelligence Index

medicalindex.ai



4] MODELHUB
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Existing Solutions

A houseroad Rename ZFNet to ZFNet-512 (#36)

8 bvlc_alexnet

i bvlc_googlenet

B bvlc_reference_caffenet
B bvlc_reference_rcnn_ilsvrc13
B densenet121

detectron

I inception_v1

| inception_v2

I resnet50

Bl scripts

M squeezenet

B style_transfer

W vgg19

Il zfnet512

E) .gitattributes

[E) LICENSE

E) README.md

Update bvlc_alexnet model

Add the value_info json for the remaining of the models except style ...
Add the value_info json for the remaining of the models except style ...

Add the value_info json for the remaining of the models except style ...

Add DenseNet-121 model

Add Detectron e2e_faster_rcnn_R-50-C4_2x model|
Add Inception models

Add Inception models

Acld ResNet-50 model

Add Detectron e2e_faster_rcnn_R-50-C4_2x model
Correct SqueezeNet value info to 227x227

Add other style transfer models

Add VGG models

Rename ZFNet to ZFNet-512 (#36)

Remove squeezenet-specific lines from .gitattributes.
Add Apache 2.0 license

Update README to describe subdirectory access

Yangging fia, Evan Shelbamer, Jeff Donabue, et al.

Latest commit 3be4824 11 hours ago

4 months ago
3 months ago
3 months ago
3 months ago
4 months ago
3 months ago
4 months ago
4 months ago
4 months ago
3 months ago
3 months ago
4 months ago
4 months ago
11 hours ago
4 months ago
4 months ago

3 months ago

Caffe: Convolutional Architecture for Fast Feature Embedding
arxiv.org/abs/1408.5093



Existing Solutions

_: houseroad Rename ZFNet to ZFNet-512 (#36) Latest commit 3be4824 11 hours ago
B bvic_alexnet Update bvlc_alexnet model 4 months ago @ Not secure | ww
i bvlc_googlenet Add the value_infojson for the remaining of the models except style ... 3 months ago Compstions.  About. Gategaries.» (el 2 GitXiv Register Sign In m
B bvlc_reference_caffenet Add the value_info json for the remaining of the models except style ... 3 months ago Receive e bestiol IOV fight[n yeui inbox. RN e
M bvlc_reference_rcnn_ilsvre13 Add the value_info json for the remaining of the models except style ... 3 months ago
Collaborative Open Computer Science
B densenet121 Add DenseNet-121 model 4 months ago
View: Top New Best Daily

B detectron Add Detectron e2e_faster_rcnn_R-50-C4_2x model 3 months ago

NiftyNet: a deep-learning platform for medical imaging
I inception_v1 Add Inception models 4 months ago ~ COMPUTER VISION  CONVOLUTIONAL NEURAL NETWORKS {ONN)  DEEF LEARNING (BL) ("]

£
inception_v2 Add Inception models 4 months ago

s i 2 P 9 DLTK: State of the Art Reference Implementations for Deep Learning on Medical

Images
B resnet50 Acld ResNet-50 model 4 months ago ~ m AN open source library for deep learning on medical images, built on TensorFlow L")

Model Z00 coupumsrvision DEEP LEARNING (DL HACHINE LEARNING
B scripts Add Detectron e2e_faster_rcnn_R-50-C4_2x maodel 3 months ago
B squeezenet Correct SqueezeNet value_info to 227x227 3 months ago : ¢ Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs °
kb GENERATIVE  SIGNAL PROCESSING
B style_transfer Add other style transfer models 4 months ago
¥ U-Net: Convolutional Networks for Biomedical Image Segmentation

W vggl19 Add VGG models 4 months ago ~ Segment blood vessels in refina fundus images ~

COMPUTER VISION  CONVOLUTIONAL NEURAL NETWORKS (CNNI - DEEF LEARNING (CL)
M zfnet512 Rename ZFNet to ZFNet-512 (#36) 11 hours ago

GitXlv.com - Collanarativa Opan Camputer Selehcs.

E) .gitattributes Remove squeezenet-specific lines from .gitattributes. 4 months ago
[E) LICENSE Add Apache 2.0 license 4 months ago
E) README.md Update README to describe subdirectory access 3 months ago

Yangging fia, Evan Shelbamer, Jeff Donabue, et al. Samim and Graphific

Caffe: Convolutional Architecture for Fast Feature Embedding GitXiv—Collaborative Open Computer Science
arxiv.org/abs/1408.5093 gitxiv.com




Components

E

scientific
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portable tool agnostic
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How it Works

E

published models

framework ———

backend

madelhub lib and flask python app

contrib_src
contributor pre-/post-processing, sample
data and models

frontend
static html, model viewer, jupyter

test drive

for everyone
run locally or remotely and quickly
explore the model in your broswer

a

jupyter notebook

for researchers
run modelhub dockers locally and
test on your own data

@ runtime environment

Abmed Hosny, Michael Schwier, Andriy Y Fedorov and Hugo JWL Aerts
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API

for developers
deploy modelhub dockers and make API
calls for model information & predictions

Modelhub: Plug & Predict Solutions for Reproducible Al Research

modelhub.ai
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Community Outreach

Medical
Artificial
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Index

info @ medicalindex.ai

track progress on benchmarking datasets

track methods for generating and countering
adversarial attacks against medical Al systems

understand public attitude towards medical Al
applications
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Community Outreach

Medical
Artificial
Intelligence
Index

HJMODELHUB

info @ medicalindex.ai info @ modelhub.ai

track progress on benchmarking datasets

track methods for generating and countering
adversarial attacks against medical Al systems co-authorship through model contributions
understand public attitude towards medical Al
applications

Abmed Hosny and Hugo JWL Aerts Abmed Hosny, Michael Schwier, Andriy Y Fedorov and Hugo JWL Aerts
Medical Artificial Intelligence Index Modelhub: Plug & Predict Solutions for Reproducible Al Research

medicalindex.ai modelhub.ai




Thank you!
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