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Disclosure Information: Scientific advisor and shareholder of Altis Labs Inc. | will not discuss off label use and/or investigational use in my presentation.
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P Lambin, ER Velazquez, R Leijenaar, S Carvalho, RGPM Stiphout, P Granton, CML Zegers, R Gillies, R Boellard, A Dekker, HIWL Aerts

Radiomics: Extracting more Information from Medical Images using Advanced Feature Analysis
European Journal of Cancer 2012
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Decoding Tumour Phenotype by Non-invasive Imaging using a Quantitative Radiomics Approach
Nature Communications 2014
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Computational Radiomics System to Decode the Radiographic Phenotype
Cancer Research 2017



Imaging and radiomics workflow

image acquisition < image processing =

& reconstruction

Image Biomarker Standardization Initiative

Phase I: Finding reference values for radiomics features

phase |

digital phantom

Phase II: Finding reference values for radiomics features with predefined image processing
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Phase lll: Validating reproducibility of standardized radiomics features

CcT 18F-FDGPET TiwMR

phase lll i i

. !

muiti-modality imaging
51 patients with soft-tissue sarcoma

i imageprocessing >

A Zwanenburg, M Vallieres, MA Abdalah, HIWL Aerts, V Andrearczyk, A Apte, S Ashrafinia, S Bakas, RJ Beukinga, R Boellaard, M Bogowicz, et al.

The Image Biomarker Standardization Initiative
Radiology 2019
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Artificial Intelligence in Radiology

Nature Reviews Cancer 2018
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Performance

Early efforts

Current state

Future outlook

Al with subhuman
performance is
occasionally used in
commercial expert
systems with varying
degrees of utility

Narrow task-specific Al has
started to match and, in
some instances, exceed
human performance in tasks
including conversational
speech recognition, driving
vehicles, playing Go and
classifying skin cancer

General Al exceeds human
performance and reasoning
in complex tasks, including
writing best-selling novels
and performing surgery.
Human intelligence
improves as we learn

from Al

. Human

Al

Time

Artificial Intelligence in Radiology

Nature Reviews Cancer 2018




a Predefined engineered features + traditional machine learning

Feature engineering
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Input Hidden layers Output

Increasingly higher-level features

—— Convolution layers for feature map extraction
—— Pooling layers for feature aggregation
—— Fully connected layers for classification

A Hosny, C Parmar, J Quackenbush, LZ Schwartz & HIWL Aerts

Artificial Intelligence in Radiology

Nature Reviews Cancer 2018
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Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study
PLoS Medicine 2018
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Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study
PLoS Medicine 2018
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Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study
PLoS Medicine 2018
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Y Xu, A Hosny, R Zeleznik, C Parmar, T Coroller, | Franko, RH Mak & HIWL Aerts

Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging
Clinical Cancer Research 2019
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An Image-based Deep Learning Framework for Individualising Radiotherapy Dose

Lancet Digital Health 2019




N this study, the authors chose to identify handcrafted radiomics features as ground truth
while comparing them to features identified by deep learning methods. The level of
agreement between these two sets of features was then used as a cost function to train and
optimise the predictive model. This method was understandably chosen as a means to
orovide a connection to the previous traditional radiomics landscape and greater
nterpretability. However, we believe that deep learning can emerge as an
independent methodology that does not need to rely on handcrafted

radiomics to move forward. Combining traditional radiomic features into deep
learning models risks incorporating the aforementioned known human biases into the
model. Additionally, a combined approach does not address the
interpretability problem since even most mathematically-derived
handcrafted features capture uninterpretable imaging characteristics

that cannot be discerned by the human eye. \cvertheless, the challenges of
traditional radiomics approaches such as lack of reproducibility and interpretability as well as
over-fitting on small datasets will only be amplified in deep learning-driven prediction
models of cancer outcome. Fortunately, interpretability of features learned through neural
networks is an active area of research, while sharing and transparency initiatives are paving
the way for larger curated cancer imaging repositories,

A Hosny, HIWL Aerts, RH Mak

Handcrafted versus Deep Learning Radiomics for Prediction of Cancer Therapy Response
Lancet Digital Health 2019
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DP Santos, M Dietzel & B Baessler

A Decade of Radiomics Research: Are Images Really Data or Just Patterns in the Noise?
European Radiology 2021



0 Ethical approval
8
Label data ‘
QL
Structure data [yt e

M Unprocessed
image data

Data access

Querying data

uality control
Suality Data de-identification

Q_
=9

Data transfer
(Local or external storage)

MJ Willemink , WA Koszek, C Hardell, 3 Wu, D Fleischmann, H Harvey, LR Folio, RM Summers, DL Rubin, MP Lungren

Preparing Medical Imaging Data for Machine Learning
Radiology 2020
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Measuring CT Scanner Variability of Radiomics Features
Investigative Radiology 2015
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Technical Biological Cost
(assay) and clinical effectiveness
validation validation

Imaging biomarker evaluated in vitro, in animals and in humans

Translational gap 1

Imaging biomarker is a reliable measure used to test hypotheses
in clinical cancer research

Translational gap 2

Imaging biomarker routinely used in the management of patients with cancer
within the healthcare system

JPB O'Connor, EO Aboagye, JE Adams, HIWL Aerts, SF Barrington, AJ Beer, R Boellaard, SE Bohndiek, MBrady, GBrown, DL Buckley, et al.

Imaging Biomarker Roadmap for Cancer Studies
Nature Reviews Clinical Oncology 2016
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